Cho hàm số đa thức bậc bốn \(y = f\left( x \right)\) có đồ thị như hình vẽ.
Phương trình \(f\left( x \right) - 1 = 0\) có bao nhiêu nghiệm thực phân biệt?
Câu hỏi trong đề: Bộ 3 đề KSCL đầu năm Toán 12 có đáp án !!
Quảng cáo
Trả lời:

Ta có số nghiệm của phương trình \(f\left( x \right) - 1 = 0\) là số giao điểm của đồ thị hàm số \(y = f\left( x \right)\) và đường thẳng \(y = 1\). Dựa vào đồ thị hàm số ta có số giao điểm là 3. Vậy phương trình \(f\left( x \right) - 1 = 0\) có 3 nghiệm thực phân biệt. Chọn A.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Giả sử \(s\left( t \right) = a{t^3} + b{t^2} + ct + d\,\,\left( {a \ne 0} \right).\)
Vì đồ thị hàm số \(s\left( t \right)\) đi qua các điểm \(\left( {0\,;\,0} \right)\), \(\left( {4\,;\,\frac{8}{3}\,} \right)\), \(\left( {8\,;\,\,\frac{{112}}{3}} \right)\) và \(\left( {10\,;\frac{{260}}{3}} \right)\) nên ta có
\(\left\{ \begin{array}{l}d = 0\\64a + 16b + 4c = \frac{8}{3}\\512a + 64b + 8c = \frac{{112}}{3}\\1000a + 100b + 10c = \frac{{260}}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = \frac{1}{6}\\b = - 1\\c = 2\\d = 0\end{array} \right.\). Do đó \(s\left( t \right) = \frac{1}{6}{t^3} - {t^2} + 2t.\)
Ta có \(v\left( t \right) = s'\left( t \right) = \frac{1}{2}{t^2} - 2t + 2 \Rightarrow \)\(v'\left( t \right) = t - 2 = 0 \Leftrightarrow t = 2.\)
Bảng biến thiên:
Dựa vào bảng biến thiên, từ giây thứ \(2\) trở đi vận tốc của vật tăng dần theo thời gian. Do đó trong \(10\) giây đầu tiên, khoảng thời gian vật chuyển động nhanh dần kéo dài trong \(8\) giây.
Đáp án: \(8\).
Lời giải
\(\overrightarrow {SA} = \left( {0;1; - 5} \right),\,\,\,\overrightarrow {SB} = \left( { - \frac{{\sqrt 3 }}{2}; - \frac{1}{2}; - 5} \right),\,\,\overrightarrow {SC} \left( {\frac{{\sqrt 3 }}{2}; - \frac{1}{2}; - 5} \right)\,\).
\(\overrightarrow {AB} = \left( { - \frac{{\sqrt 3 }}{2}; - \frac{3}{2};0} \right),\,\,\,\overrightarrow {BC} = \left( {\sqrt 3 ;0;0} \right),\,\,\overrightarrow {AC} = \left( {\frac{{\sqrt 3 }}{2}; - \frac{3}{2};0} \right) \Rightarrow AB = BC = AC = 3\).
Ta có \(SA = SB = SC = \sqrt {26} \) nên hình chiếu của \(S\) trên \(\left( {ABC} \right)\) là tâm đường tròn ngoại tiếp \(\Delta ABC\) mà lại có \(\Delta ABC\) đều nên \(SO \bot \left( {ABC} \right)\).
Giả sử \(\overrightarrow {{F_1}} = k\overrightarrow {SA} ,\,\,\,\overrightarrow {{F_2}} = k\overrightarrow {SB} ,\,\,\,\overrightarrow {{F_3}} = k\overrightarrow {SC} \,\,\,\left( {k > 0} \right)\)
\( \Rightarrow \overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = k\left( {\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} } \right) = \left( {0;0; - 15k} \right)\).
Theo bài ta lại có \(\left| {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} } \right| = 60 \Rightarrow 15k = 60 \Rightarrow k = 4\).
Vậy \(\left| {\overrightarrow {{F_1}} } \right| + \left| {\overrightarrow {{F_2}} } \right| + \left| {\overrightarrow {{F_3}} } \right| = 4\left( {SA + SB + SC} \right) = 12\sqrt {26} \) (N).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.