Cho tứ diện \[OABC\], có \[OA,OB,OC\]đôi một vuông góc và \[OA = 5,OB = 2,OC = 4\]. Gọi \[M,N\] lần lượt là trung điểm của \[OB\]và \[OC\]. Gọi G,K lần lượt là trọng tâm của tam giác \[ABC\] và AMN . Chọn hệ tọa độ Oxyz như hình vẽ dưới.

a) Lập phương trình mặt phẳng (ABC) .
b) Tính khoảng cách từ điểm B đến mặt phẳng (SMN) .
Cho tứ diện \[OABC\], có \[OA,OB,OC\]đôi một vuông góc và \[OA = 5,OB = 2,OC = 4\]. Gọi \[M,N\] lần lượt là trung điểm của \[OB\]và \[OC\]. Gọi G,K lần lượt là trọng tâm của tam giác \[ABC\] và AMN . Chọn hệ tọa độ Oxyz như hình vẽ dưới.
a) Lập phương trình mặt phẳng (ABC) .
b) Tính khoảng cách từ điểm B đến mặt phẳng (SMN) .
Quảng cáo
Trả lời:

Chọn hệ trục tọa độ \[{\rm{Ox}}yz\]như hình vẽ.
Ta có \[O\left( {0;0;0} \right)\], \[A \in {\rm{Oz}},\;B \in Ox,\;C \in Oy\]sao cho \[AO = 5,\;OB = 2,\;OC = 4\]
\[ \Rightarrow A\left( {0;0;5} \right),\;B\left( {2;0;0} \right),\;C\left( {0;4;0} \right)\].
Khi đó: \[G\] là trọng tâm tam giác\[ABC\] nên \[G\left( {\frac{2}{3};\frac{4}{3};\frac{5}{3}} \right)\]
\[M\]là trung điểm \[OB\]nên \[M\left( {1;0;0} \right)\]
\[N\]là trung điểm \[OC\]nên \[N\left( {0;2;0} \right)\].
K là trọng tâm tam giácAMN nên K()
a) Lập phương trình mặt phẳng (ABC) .
b) Tính khoảng cách từ điểm B đến mặt phẳng (SMN) .
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
M(0;-3;0)
Ta có .
Theo giả thiết: .
Vậy M(0;-3;0)
Lời giải
Thiết lập hệ tọa độ Oxyz như hình vẽ, gốc O=B'.
Khi đó:
a) Lập phương trình mặt phẳng (A'BC') .
b) Tính khoảng cách từ điểm Q đến mặt phẳng (MNP) .
c) Tính khoảng giữa hai mặt phẳng (A'BC') và mặt phẳng (ACD').
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.