Câu hỏi:

19/08/2025 41 Lưu

Cho tứ diện \[OABC\], có \[OA,OB,OC\]đôi một vuông góc và \[OA = 5,OB = 2,OC = 4\]. Gọi \[M,N\] lần lượt là trung điểm của \[OB\]và \[OC\]. Gọi G,K lần lượt là trọng tâm của tam giác \[ABC\] và AMN . Chọn hệ tọa độ Oxyz như hình vẽ dưới.

(Trả lời ngắn) Cho tứ diện OABC, có OA,OB,OCđôi một vuông góc và (ảnh 1)

           a) Lập phương trình mặt phẳng (ABC) .

           b) Tính khoảng cách từ điểm B đến mặt phẳng (SMN) .

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn hệ trục tọa độ \[{\rm{Ox}}yz\]như hình vẽ.

(Trả lời ngắn) Cho tứ diện OABC, có OA,OB,OCđôi một vuông góc và (ảnh 2)

Ta có \[O\left( {0;0;0} \right)\], \[A \in {\rm{Oz}},\;B \in Ox,\;C \in Oy\]sao cho \[AO = 5,\;OB = 2,\;OC = 4\]

\[ \Rightarrow A\left( {0;0;5} \right),\;B\left( {2;0;0} \right),\;C\left( {0;4;0} \right)\].

Khi đó: \[G\] là trọng tâm tam giác\[ABC\] nên \[G\left( {\frac{2}{3};\frac{4}{3};\frac{5}{3}} \right)\]

\[M\]là trung điểm \[OB\]nên \[M\left( {1;0;0} \right)\]

\[N\]là trung điểm \[OC\]nên \[N\left( {0;2;0} \right)\].

K là trọng tâm tam giácAMN nên K(13;23;53)

a) Lập phương trình mặt phẳng (ABC) .

b) Tính khoảng cách từ điểm B đến mặt phẳng (SMN) .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

 

(Trả lời ngắn)  Một sân vận động được xây dựng theo mô hình là hình chóp cụt OAGD.BCFEcó hai đáy song song với nhau. Mặt sân OAGD là hình chữ nhật và được gắn hệ trục Oxyz như hình vẽ dưới (đơn vị trên mỗi trục tọa độ là mét). Mặt sân OAGD có chiều dài OA=100m , chiều rộng OD=60m và tọa độ điểm B(10;10;8). (ảnh 2)

a) Lập phương trình mặt phẳng (OACB).

 Gắn hình chóp cụt OAGD.BCFE vào hệ trục Oxyz, ta có:

O(0;0;0),A(100;0;00,G(100;60;0),D(0;60;0),B(10;10n=(4;0;-5) ;8)

OA=(100;0;0),OB=(10;10;8)

Vectơ pháp tuyến của mặt phẳng (OBED) là n=OA,OB=(0;-100;1000)=-100(0;1;-10)

Phương trình mặt phẳng (OBED) đi qua điểm O(0;0;0) và có vectơ pháp tuyến n=(0;1;-10) là: y-10z=0

b) Tính khoảng cách từ điểm G đến mặt phẳng (OBED) .

OD=(0;60;0),OB=(10;10;8)

Vectơ pháp tuyến của mặt phẳng (OBED) là n=OD,OB=(480;0;-600)=120(4;0;-5)

Phương trình mặt phẳng (OBED)  đi qua điểm O(0;0;0)  và có vectơ pháp tuyến  là:n=(4;0;-5) 

khoảng cách từ điểm G đến mặt phẳng (OBED)  là: d(G(OBED))=4.100-5.016+25=400414162,5m

Lời giải

M(0;-3;0)

Ta có MOyM(0;y;0).

Theo giả thiết: d(M,(P))=d(M,(Q))y+13=-y-53y=-3.

Vậy M(0;-3;0)