Câu hỏi:

20/08/2025 78 Lưu

Khi quả bóng được đá lên, nó sẽ đạt độ cao nào đó rồi rơi xuống đất. Biết rằng quỹ đạo của quả bóng là một cung parabol trong mặt phẳng với hệ tọa độ \[Oth\], trong đó \(t\) là thời gian, \(h\) là độ cao của quả bóng. Giả thiết rằng quả bóng được đá lên từ độ cao \(0,5{\rm{m}}\). Sau đó \(1\) giây nó đạt độ cao \(12,5\,{\rm{m}}\) và sau \[3\] giây sau khi đá lên nó ở độ cao \({\rm{18,5}}\,{\rm{m}}\). Hãy xác định thời gian mà quả bóng được đá lên cao nhất sau khi quả bóng được đá lên? 

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án

Vì quỹ đạo của quả bóng là một cung parabol nên phương trình có dạng \(h = f\left( t \right) = a{t^2} + bt + c,\,(a \ne 0)\).

Theo bài ra ta có \(f\left( 0 \right) = 0,5\,\,;\,f\left( 1 \right) = 12,5\,\,;\,\,f\left( 3 \right) = 18,5\).

Từ đây ta có hệ phương trình: \(\left\{ \begin{array}{l}c = 0,5\\a + b + c = 12,5\\9a + 3b + c = 18,5\end{array} \right.\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}\begin{array}{l}a = - 3\\b = 15\end{array}\\{c = \frac{1}{2}}\end{array}} \right.\).

Suy ra phương trình parabol là \(h = - 3{t^2} + 15t + \frac{1}{2}\).

Parabol có hệ số \[a = - 3 < 0\], đỉnh \[I\left( {\frac{5}{2};\frac{{77}}{4}} \right)\].

Khi đó quả bóng đạt vị trí cao nhất là lúc \(t = \frac{5}{2} = 2,5\) giây.

Đáp án: 2,5.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án

Ta có \(\frac{1}{{{{\sin }^2}\alpha }} = 1 + {\cot ^2}\alpha = 1 + 18 = 19\)\( \Rightarrow {\sin ^2}\alpha = \frac{1}{{19}}\)\( \Rightarrow \sin \alpha = \pm \frac{1}{{\sqrt {19} }}\).

Vì \[\frac{\pi }{2} < \alpha < \pi \]\[ \Rightarrow \sin \alpha > 0\]\[ \Rightarrow \sin \alpha = \frac{1}{{\sqrt {19} }}\].</>

Suy ra \[\tan \frac{\alpha }{2} + \cot \frac{\alpha }{2} = \frac{{{{\sin }^2}\frac{\alpha }{2} + {{\cos }^2}\frac{\alpha }{2}}}{{\sin \frac{\alpha }{2}\cos \frac{\alpha }{2}}} = \frac{2}{{\sin \alpha }} = 2\sqrt {19} \approx 8,72\].

Đáp án: \[8,72\].

Câu 2

A. \(\frac{7}{9}\).

B. \( - \frac{7}{9}\)\(.\)

C. \(\frac{1}{3}\).

D. \(\frac{{11}}{3}\). 

Lời giải

Ta có \({\left( {\sin x - \cos x} \right)^2} = \frac{2}{9} \Leftrightarrow {\sin ^2}x - 2\sin x\cos x + {\cos ^2}x = \frac{2}{9} \Leftrightarrow 1 - \sin 2x = \frac{2}{9}\)\( \Leftrightarrow \sin 2x = \frac{7}{9}\). Chọn A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[240^\circ .\]

B. \[72^\circ .\]

C. \[270^\circ .\]

D. \[135^\circ .\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP