Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Gọi G là trọng tâm của tam giác SAB và M,N lần lượt là trung điểm của SC,SD.
a) Tính khoảng cách từ điểm A đến mặt phẳng (SBD) .
b) Tính khoảng cách từ điểm S đến mặt phẳng (GMN) .
Trả lời: ………………………………
Quảng cáo
Trả lời:

Chọn hệ trục tọa độ Oxyz như hình vẽ. Khi đó
S(0;0;);A();C();D()
suy ra G() ; M(); N(
a) Tính khoảng cách từ điểm A đến mặt phẳng (SBD) .
b) Tính khoảng cách từ điểm S đến mặt phẳng (GMN) .
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Lập phương trình mặt phẳng (OACB).
Gắn hình chóp cụt OAGD.BCFE vào hệ trục Oxyz, ta có:
O(0;0;0),A(100;0;00,G(100;60;0),D(0;60;0),B(10;10;8)
Vectơ pháp tuyến của mặt phẳng (OBED) là
Phương trình mặt phẳng (OBED) đi qua điểm O(0;0;0) và có vectơ pháp tuyến là: y-10z=0
b) Tính khoảng cách từ điểm G đến mặt phẳng (OBED) .
Vectơ pháp tuyến của mặt phẳng (OBED) là
Phương trình mặt phẳng (OBED) đi qua điểm O(0;0;0) và có vectơ pháp tuyến là:
khoảng cách từ điểm G đến mặt phẳng (OBED) là:
Lời giải
M(0;-3;0)
Ta có .
Theo giả thiết: .
Vậy M(0;-3;0)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.