Câu hỏi:

14/08/2025 21 Lưu

Cho tập hợp \(S = \left\{ {1;2;3;4;5;6} \right\}\). Có thể lập được bao nhiêu số tự nhiên gồm bốn chữ số khác nhau lấy từ tập hợp \(S\)?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi số tự nhiên cần tìm: \(\overline {abcd} \).

Để lập một số tự nhiên gồm bốn chữ số khác nhau lấy từ tập hợp \(S\), ta chọn 4 chữ số từ tập \(S\) và sắp thứ tự, vậy số các số tự nhiên lập được chính là số chỉnh hợp chập 4 của 6 phần tử: \(A_6^4 = 360\) số. Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. Do \(180^\circ < x < 270^\circ \Rightarrow \sin x < 0\).

b) Đúng. Ta có \({\sin ^2}x + {\cos ^2}x = 1 \Rightarrow {\sin ^2}x = 1 - {\cos ^2}x = 1 - \frac{{25}}{{169}} = \frac{{144}}{{169}}\)\( \Rightarrow \sin x = - \frac{{12}}{{13}}\).

Khi đó, \(\tan x = \frac{{\sin x}}{{\cos x}} = \frac{{12}}{5}\).

c) Đúng. Ta có \(\cot x = \frac{{\cos x}}{{\sin x}} = \frac{5}{{12}}\).

d) Sai. Ta có \(\sin x - \cos x = - \frac{7}{{13}}\).

Lời giải

Ta có \(T = 2\sin \left( {4\pi + \frac{\pi }{2} - x} \right) + 3\cos \left( {18\pi + \pi - x} \right)\)

\( = 2\sin \left( {\frac{\pi }{2} - x} \right) + 3\cos \left( {\pi - x} \right) = 2\cos x - 3\cos x = - \cos x\). Vậy \(k = - 1\).

Đáp án: \( - 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP