Câu hỏi:

14/08/2025 27 Lưu

Biểu thức \(T = 2\sin \left( {\frac{{9\pi }}{2} - x} \right) + 3\cos \left( {19\pi - x} \right) = k\cos x\) . Khi đó \(k = ?\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \(T = 2\sin \left( {4\pi + \frac{\pi }{2} - x} \right) + 3\cos \left( {18\pi + \pi - x} \right)\)

\( = 2\sin \left( {\frac{\pi }{2} - x} \right) + 3\cos \left( {\pi - x} \right) = 2\cos x - 3\cos x = - \cos x\). Vậy \(k = - 1\).

Đáp án: \( - 1\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

 a) Trong \(\left( {SAB} \right)\), ta có \(\frac{{AM}}{{AS}} \ne \frac{{AP}}{{AB}}\), gọi \(O = MP \cap SB\).       

Trong \(\left( {SBC} \right)\), gọi \(K = ON \cap SC \Rightarrow \left\{ \begin{array}{l}K \in ON \Rightarrow K \in \left( {MNP} \right)\\K \in SC\end{array} \right. \Rightarrow K = SC \cap \left( {MNP} \right)\).

b) Ta có (định lí ba đường giao tuyến).        

 Mặt khác \(\frac{{BP}}{{BA}} \ne \frac{{BN}}{{BC}}\) nên \(NP\) cắt \(AC\) tại \(I\), do đó \(NP,MK,AC\) đồng quy tại \(I\).

Lời giải

a) Đúng. Do \(180^\circ < x < 270^\circ \Rightarrow \sin x < 0\).

b) Đúng. Ta có \({\sin ^2}x + {\cos ^2}x = 1 \Rightarrow {\sin ^2}x = 1 - {\cos ^2}x = 1 - \frac{{25}}{{169}} = \frac{{144}}{{169}}\)\( \Rightarrow \sin x = - \frac{{12}}{{13}}\).

Khi đó, \(\tan x = \frac{{\sin x}}{{\cos x}} = \frac{{12}}{5}\).

c) Đúng. Ta có \(\cot x = \frac{{\cos x}}{{\sin x}} = \frac{5}{{12}}\).

d) Sai. Ta có \(\sin x - \cos x = - \frac{7}{{13}}\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP