Câu hỏi:

14/08/2025 17 Lưu

Cho hình chóp\(S.ABCD\) có đáy \(ABCD\) là hình thang \(\left( {AB{\rm{//}}CD} \right)\). Gọi \(M\), \(N\) và \(P\) lần lượt là trung điểm của \(BC\), \(AD\) và \(SA\). Giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {MNP} \right)\) là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cho hình chóp S.ABCD có đáy  ABCD là hình thang  AB//CD. Gọi M,N và P lần lượt là trung điểm của BC, AD và SA Giao tuyến của hai mặt (ảnh 1)

Ta có \(P \in SA \subset \left( {SAB} \right)\); \(P \in \left( {MNP} \right)\) nên \(P\) là điểm chung của mặt phẳng \(\left( {SAB} \right)\) và \(\left( {MNP} \right)\).

Mặt khác: \(MN{\rm{//}}AB\) (đường trung bình của hình thang). Vậy giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {MNP} \right)\) là đường thẳng qua \(P\) và song song với \(AB\). Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(T = 2\sin \left( {4\pi + \frac{\pi }{2} - x} \right) + 3\cos \left( {18\pi + \pi - x} \right)\)

\( = 2\sin \left( {\frac{\pi }{2} - x} \right) + 3\cos \left( {\pi - x} \right) = 2\cos x - 3\cos x = - \cos x\). Vậy \(k = - 1\).

Đáp án: \( - 1\).

Lời giải

 a) Trong \(\left( {SAB} \right)\), ta có \(\frac{{AM}}{{AS}} \ne \frac{{AP}}{{AB}}\), gọi \(O = MP \cap SB\).       

Trong \(\left( {SBC} \right)\), gọi \(K = ON \cap SC \Rightarrow \left\{ \begin{array}{l}K \in ON \Rightarrow K \in \left( {MNP} \right)\\K \in SC\end{array} \right. \Rightarrow K = SC \cap \left( {MNP} \right)\).

b) Ta có (định lí ba đường giao tuyến).        

 Mặt khác \(\frac{{BP}}{{BA}} \ne \frac{{BN}}{{BC}}\) nên \(NP\) cắt \(AC\) tại \(I\), do đó \(NP,MK,AC\) đồng quy tại \(I\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP