PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng (Đ) hoặc sai (S)
Một tấm sắt hình chữ nhật có chu vi là 96 cm. Người ta cắt ở mỗi góc tấm sắt một hình vuông cạnh là 4 cm.

a) Diện tích phần cắt đi là \[4 \cdot {4^2}\] \[\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\].
b) Gọi chiều dài của tấm sắt là \[x\] (cm) thì chiều rộng tấm sắt là \[96 - x\] (cm).
c) Diện tích phần còn lại của tấm sắt là \[ - {x^2} + 48x - 64\,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\].
d) Diện tích phần còn lại của tấm sắt ít nhất bằng 448 \({\rm{c}}{{\rm{m}}^{\rm{2}}}\) khi và chỉ khi chiều dài của tấm sắt nằm trong đoạn \[\left[ {16;32} \right]\] (cm).
PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng (Đ) hoặc sai (S)
Một tấm sắt hình chữ nhật có chu vi là 96 cm. Người ta cắt ở mỗi góc tấm sắt một hình vuông cạnh là 4 cm.
a) Diện tích phần cắt đi là \[4 \cdot {4^2}\] \[\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\].
b) Gọi chiều dài của tấm sắt là \[x\] (cm) thì chiều rộng tấm sắt là \[96 - x\] (cm).
c) Diện tích phần còn lại của tấm sắt là \[ - {x^2} + 48x - 64\,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\].
d) Diện tích phần còn lại của tấm sắt ít nhất bằng 448 \({\rm{c}}{{\rm{m}}^{\rm{2}}}\) khi và chỉ khi chiều dài của tấm sắt nằm trong đoạn \[\left[ {16;32} \right]\] (cm).Câu hỏi trong đề: Bộ 3 đề KSCL đầu năm Toán 11 có đáp án !!
Quảng cáo
Trả lời:
a) Đúng. Người ta cắt ở mỗi góc tấm sắt một hình vuông cạnh bằng 4 cm nên diện tích phần cắt đi là: \(4 \cdot {4^2} = 64\,\,\,(c{m^2})\).
b) Sai. Theo bài ta có nửa chu vi của tấm sắt là \(96:2 = 48\,(cm)\).
Gọi chiều dài của tấm sắt là \(x\,\,(cm)\,\).
Chiều rộng của tấm sắt sẽ là \(48 - x\,\,\,(cm)\).
c) Đúng. Do chiều dài lớn hơn chiều rộng nên ta có: \(x > 48 - x \Leftrightarrow x > 24\,(cm)\).
Diện tích của tấm sắt ban đầu là \(x\left( {48 - x} \right)\,\,{\rm{(c}}{{\rm{m}}^{\rm{2}}}{\rm{)}}\).
Diện tích phần còn lại của tấm sắt là \(x\left( {48 - x} \right)\, - 64 = - {x^2} + 48x - 64\,\,{\rm{(c}}{{\rm{m}}^2}{\rm{)}}\).
d) Sai. Để diện tích còn lại của tấm sắt ít nhất bằng 448 \({\rm{c}}{{\rm{m}}^{\rm{2}}}\) nên ta có phương trình:
\(x\left( {48 - x} \right) - 64 \ge 448 \Leftrightarrow {x^2} - 48x + 512 \le 0\).
Đặt \(f\left( x \right) = {x^2} - 48x + 512\)\( \Rightarrow f(x) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 32\\x = 16\end{array} \right.\).
Do hệ số \(a = 1 > 0\) nên bảng xét dấu của \(f\left( x \right)\) là:
Dựa vào bảng xét dấu ta có: \(x \in \left[ {16;32} \right]\). Kết hợp với điều kiện của \(x\) ta có \(x \in \left( {24;32} \right]\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng. \(SO\) giao tuyến của hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {SBD} \right)\).
b) Đúng. Trong mặt phẳng \(\left( {SAC} \right)\), gọi \(I = SO \cap AN\).
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{I \in AN}\\{I \in SO,SO \subset \left( {SBD} \right)}\end{array} \Rightarrow I = AN \cap \left( {SBD} \right)} \right.\).
c) Sai. Trong mặt phẳng \(\left( {ABCD} \right)\), gọi \(P = CM \cap BD\);
Trong mặt phẳng \(\left( {SCM} \right)\), gọi \(J = MN \cap SP\);
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{J \in MN}\\{J \in SP,SP \subset \left( {SBD} \right)}\end{array} \Rightarrow J = MN \cap \left( {SBD} \right)} \right.\).
d) Đúng. Dễ thấy \(B \in \left( {ABN} \right) \cap \left( {SBD} \right)\). (1)
Ta có \(\left\{ {\begin{array}{*{20}{l}}{I \in AN,AN \subset \left( {ABN} \right)}\\{I \in SO,SO \subset \left( {SBD} \right)}\end{array} \Rightarrow I \in \left( {ABN} \right) \cap \left( {SBD} \right)} \right.\). (2)
Tương tự: \(\left\{ {\begin{array}{*{20}{l}}{J \in MN,MN \subset \left( {ABN} \right)}\\{J \in SP,SP \subset \left( {SBD} \right)}\end{array} \Rightarrow J \in \left( {ABN} \right) \cap \left( {SBD} \right)} \right.\). (3)
Từ (1), (2), (3) suy ra \(B,I,J\) cùng thuộc giao tuyến của hai mặt phẳng \(\left( {ABN} \right)\) và \(\left( {SBD} \right)\) nên ba điểm này thẳng hàng.
Lời giải
Ta có \[{\tan ^2}\alpha + {\cot ^2}\alpha = \frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} + \frac{{{{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} = \frac{{{{\sin }^4}\alpha + {{\cos }^4}\alpha }}{{{{\cos }^2}\alpha .{{\sin }^2}\alpha }} = \frac{{1 - 2{{\sin }^2}\alpha {{\cos }^2}\alpha }}{{{{\cos }^2}\alpha .{{\sin }^2}\alpha }} = \frac{{1 - 2.{{\left( { - \frac{1}{4}} \right)}^2}}}{{{{\left( { - \frac{1}{4}} \right)}^2}}} = 14\].
Chọn B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.