Câu hỏi:

13/03/2020 30,592

Năm ngoái, tổng số dân của hai tỉnh A và B là 4 triệu. Năm nay, dân số của tỉnh A tăng thêm 1,1%, còn dân số của tỉnh B tăng thêm 1,2%. Tuy vậy số dân của tỉnh A năm nay vẫn nhiều hơn tỉnh B là 807200 người. Tính số dân năm ngoái của mỗi tỉnh.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

* Phân tích:

  Năm ngoái Năm nay
Tỉnh A x x + x.1,1% = 1,011.x
Tỉnh B 4 – x (4 – x) + (4 – x).1,2% = (4 – x).1,012

Dân số tỉnh A năm nay nhiều hơn dân số tỉnh B là 807200 người = 0,8072 (triệu người) nên ta có phương trình:

1,011.x - 1,012.(4 – x) = 0,8072.

* Giải:

Gọi x là số dân năm ngoái của tỉnh A (0 < x < 4; x ∈ N*; triệu người)

Số dân năm ngoái của tỉnh B: 4 – x (triệu người).

Năm nay dân số của tỉnh A tăng 1,1 % nên số dân của tỉnh A năm nay: x + 1,1% x = 1,011.x

Năm nay dân số của tỉnh B tăng 1,2 % nên số dân của tỉnh B năm nay: (4 – x) + 1,2% (4 – x) = 1,012(4 – x)

Vì số dân tỉnh A năm nay hơn tỉnh B là 807200 người = 0,8072 triệu người nên ta có phương trình:

1,011.x - 1,012(4 – x) = 0,8072

⇔ 1,011x – 4,048 + 1,012x = 0,8072

⇔ 2,023. x = 4,8552

⇔ x = 2,4 (thỏa mãn).

Vậy dân số của tỉnh A năm ngoái là 2,4 triệu người, dân số tỉnh B năm ngoái là 4 – 2,4 = 1,6 triệu người

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

* Phân tích:

Với một số có hai chữ số bất kì ta luôn có: Giải bài 41 trang 31 SGK Toán 8 Tập 2 | Giải toán lớp 8

Khi thêm chữ số 1 xen vào giữa ta được số: Giải bài 41 trang 31 SGK Toán 8 Tập 2 | Giải toán lớp 8

Vì chữ số hàng đơn vị gấp 2 lần chữ số hàng chục nên ta có y = 2x.

Số mới lớn hơn số ban đầu 370 nên ta có phương trình:

100x + 10 + 2x = 10x + 2x + 370.

* Giải:

Gọi chữ số hàng chục của số cần tìm là x (x ∈ N; 0 < x ≤ 9).

⇒ Chữ số hàng đơn vị là 2x

⇒ Số cần tìm bằng Giải bài 41 trang 31 SGK Toán 8 Tập 2 | Giải toán lớp 8

Sau khi viết thêm chữ số 1 vào giữa hai chữ số ta được số mới là:

Giải bài 41 trang 31 SGK Toán 8 Tập 2 | Giải toán lớp 8

Theo đề bài số mới lớn hơn số ban đầu 370, ta có B = A + 370 nên ta có phương trình

102x + 10 = 12x + 370

⇔ 102x – 12x = 370 – 10

⇔ 90x = 360

⇔ x = 4 (thỏa mãn)

Vậy số cần tìm là 48.

*Lưu ý : Vì chỉ có 4 số có hai chữ số thỏa mãn điều kiện chữ số hàng đơn vị gấp đôi chữ số hàng chục là : 12 ; 24 ; 36 ; 48 nên ta có thể đi thử trực tiếp mà không cần giải bằng cách lập phương trình.

Lời giải

* Phân tích:

Ta luôn có: Quãng đường = vận tốc . thời gian

Giải bài 46 trang 31 SGK Toán 8 Tập 2 | Giải toán lớp 8

Gọi C là địa điểm ô tô gặp tàu hỏa.

Quãng đường AC ô tô đi với vận tốc 48km/h trong 1h nên SAC = 48km.

Xét trên quãng đường BC, để đến B đúng thời gian đã định ô tô đi với vận tốc 48 + 6 = 54 (km/h).

Vì ô tô đến B đúng thời gian đã định nên thời gian thực tế ô tô đi từ B đến C ít hơn thời gian dự định là 10 phút = 1/6 giờ (là thời gian chờ tàu hỏa).

  Quãng đường BC Vận tốc Thời gian
Dự tính x 48 Giải bài 46 trang 31 SGK Toán 8 Tập 2 | Giải toán lớp 8
Thực tế x 48 + 6 = 54 Giải bài 46 trang 31 SGK Toán 8 Tập 2 | Giải toán lớp 8

Ta có phương trình: Giải bài 46 trang 31 SGK Toán 8 Tập 2 | Giải toán lớp 8

* Giải:

Giải bài 46 trang 31 SGK Toán 8 Tập 2 | Giải toán lớp 8

Gọi C là địa điểm ô tô gặp tàu hỏa.

Quãng đường AC ô tô đi với vận tốc 48km/h và đi trong 1 giờ

⇒ SAC = 48.1 = 48 (km).

Gọi quãng đường BC dài là x (km; x > 0).

Vận tốc dự tính đi trên BC là: 48 km/h

⇒ Thời gian dự tính đi quãng đường BC hết: Giải bài 46 trang 31 SGK Toán 8 Tập 2 | Giải toán lớp 8 (giờ).

Thực tế ô tô đi quãng đường BC với vận tốc bằng 48 + 6 = 54 (km/h).

⇒ Thời gian thực tế ô tô đi quãng đường BC là: Giải bài 46 trang 31 SGK Toán 8 Tập 2 | Giải toán lớp 8 (giờ).

Thời gian chênh nhau giữa dự tính và thực tế chính là thời gian ô tô đợi tàu hỏa là 10 phút = 1/6 (giờ).

Do đó ta có phương trình:

Giải bài 46 trang 31 SGK Toán 8 Tập 2 | Giải toán lớp 8

⇔ x = 72 (thỏa mãn) nên quãng đường BC là 72 (km).

Vậy quãng đường AB là:

SAB = SAC + SBC = 48 + 72 = 120 (km).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP