Cho hình lập phương \[ABCD.A'B'C'D'\] có tâm \(O\). Gọi \(I\) là tâm của hình vuông \(A'B'C'D'\) và điểm \(M\) thuộc đoạn \(OI\) sao cho \(MO = 2MI\) (tham khảo hình vẽ). Tính sin của góc tạo bởi hai mặt phẳng \(\left( {MC'D'} \right)\) và \(\left( {MAB} \right)\) (làm tròn kết quả đến hàng phần trăm).
Cho hình lập phương \[ABCD.A'B'C'D'\] có tâm \(O\). Gọi \(I\) là tâm của hình vuông \(A'B'C'D'\) và điểm \(M\) thuộc đoạn \(OI\) sao cho \(MO = 2MI\) (tham khảo hình vẽ). Tính sin của góc tạo bởi hai mặt phẳng \(\left( {MC'D'} \right)\) và \(\left( {MAB} \right)\) (làm tròn kết quả đến hàng phần trăm).

Quảng cáo
Trả lời:
Gắn hệ trục tọa độ như hình vẽ, cạnh hình lập phương là \(1\), ta được tọa độ các điểm như sau :
\(M\left( {\frac{1}{2};\frac{1}{2};\frac{1}{6}} \right)\)\(,C'\left( {0;1;0} \right)\)\(,D'\left( {1;1;0} \right)\) và \(A\left( {1;0;1} \right)\)\(,B\left( {0;0;1} \right)\).
Khi đó \({\overrightarrow n _{\left( {MC'D'} \right)}} = \left( {0;1;3} \right)\)\(;{\overrightarrow n _{\left( {MAB} \right)}} = \left( {0;5;3} \right)\) nên \(\cos \widehat {\left( {\left( {MAB} \right),\left( {MC'D'} \right)} \right)}\)\( = \frac{{\left| {5.1 + 3.3} \right|}}{{\sqrt {{5^2} + {3^2}} .\sqrt {{1^2} + {3^2}} }}\) \( = \frac{{7\sqrt {85} }}{{85}}\).
Suy ra \[\sin \widehat {\left( {\left( {MAB} \right),\left( {MC'D'} \right)} \right)}\]\[ = \sqrt {1 - {{\left( {\frac{{7\sqrt {85} }}{{85}}} \right)}^2}} \]\( = \frac{{6\sqrt {85} }}{{85}}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: \[45\]
\[\left( P \right)\]qua O và nhận \[\overrightarrow {OH} = \left( {2;1;2} \right)\]làm VTPT
\[\left( Q \right):x - y - 11 = 0\] có VTPT \[\overrightarrow n = \left( {1;1;0} \right)\]
Ta cóLời giải

Gọi \(O\) là trung điểm \(BC\).
Ta có: vàTheo đề bài:

Coi \(a = 1\).
Gắn hệ trục tọa độ \(Oxyz\)như hình vẽ với \(O\left( {0;\,0;\,0} \right)\), \(A\left( {0;\,\frac{1}{2};\,0} \right)\), \(B\left( {\frac{{\sqrt 3 }}{2};\,0;\,0} \right)\), \(C\left( { - \frac{{\sqrt 3 }}{2};\,0;\,0} \right)\), \(B'\left( {\frac{{\sqrt 3 }}{2};\,0;\,1} \right)\), \(M\left( { - \frac{{\sqrt 3 }}{2};\,0;\,\frac{3}{2}} \right)\).
Khi đó \(\left( {ABC} \right) \equiv \left( {Oxy} \right):z = 0 \Rightarrow \left( {ABC} \right)\) có một véc-tơ pháp tuyến là \(\overrightarrow k = \left( {0;\,0;\,1} \right)\).
Ta có: \(\overrightarrow {AB'} = \left( {\frac{{\sqrt 3 }}{2};\, - \frac{1}{2};\,1} \right)\), \(\overrightarrow {AM} = \left( { - \frac{{\sqrt 3 }}{2};\, - \frac{1}{2};\,\frac{3}{2}} \right)\)\( \Rightarrow \overrightarrow {{n_{\left( {AB'M} \right)}}} = 4\left[ {\overrightarrow {AB'} ,\overrightarrow {AM} } \right] = \left( {1;\,5\sqrt 3 ;\,2\sqrt 3 } \right)\).
Gọi \(\alpha \) là góc giữa hai mặt phẳng \(\left( {ABC} \right)\) và \(\left( {AB'M} \right)\).
Vậy \[{\rm{cos}}\alpha = \frac{{\left| {\overrightarrow k .\overrightarrow {{n_{\left( {AB'M} \right)}}} } \right|}}{{\left| {\overrightarrow k } \right|.\left| {\overrightarrow {{n_{\left( {AB'M} \right)}}} } \right|}} = \frac{{\left| {2\sqrt 3 } \right|}}{{1.2\sqrt {22} }} = \sqrt {\frac{3}{{22}}} \Rightarrow {\rm{sin}}\alpha = \sqrt {1 - {\rm{co}}{{\rm{s}}^2}\alpha } = \sqrt {\frac{{19}}{{22}}} = \frac{{\sqrt {418} }}{{22}}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.