Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông cân tại \(B\), \(AC = 2a\), tam giác \(SAB\) và tam giác \(SCB\) lần lượt vuông tại \(A\), \(C\). Khoảng cách từ \(S\) đến mặt phẳng \[\left( {ABC} \right)\] bằng \(2a\). Tính côsin của góc giữa hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SCB} \right)\) ta được kết quả là \(\frac{a}{b}\), với \(\frac{a}{b}\) là phân số tối giản. Tính a + b.
Quảng cáo
Trả lời:


Chọn hệ trục tọa độ sao cho \[B\left( {0;0;0} \right)\], \[A\left( {a\sqrt 2 ;0;0} \right)\], \[C\left( {0;a\sqrt 2 ;0} \right)\], \[S\left( {x;y;z} \right)\].
Ta có \[\left( {ABC} \right):z = 0\], \[\overrightarrow {AS} = \left( {x - a\sqrt 2 ;y;z} \right)\], \[\overrightarrow {CS} = \left( {x;y - a\sqrt 2 ;z} \right)\]
Do \[\overrightarrow {AS} .\overrightarrow {AB} = 0\]\[ \Rightarrow \left( {x - a\sqrt 2 } \right)a\sqrt 2 = 0\]\[ \Rightarrow x = a\sqrt 2 \], \[d\left( {S,\left( {ABC} \right)} \right) = 2a\]\[ \Rightarrow z = 2a\] \[\left( {z > 0} \right)\]
\[\overrightarrow {CS} .\overrightarrow {CB} = 0\]\[ \Rightarrow \left( {y - a\sqrt 2 } \right)a\sqrt 2 = 0\]\[ \Rightarrow y = a\sqrt 2 \]\[ \Rightarrow S\left( {a\sqrt 2 ;a\sqrt 2 ;2a} \right)\].
Ta có \[\overrightarrow {AS} = \left( {0;a\sqrt 2 ;2a} \right)\], \[\overrightarrow {CS} = \left( {a\sqrt 2 ;0;2a} \right)\], \[\overrightarrow {BS} = \left( {a\sqrt 2 ;a\sqrt 2 ;2a} \right)\].
\[\left( {SBC} \right)\] có 1 vtpt \[\vec n = \left( { - \sqrt 2 ;0;1} \right)\], \[\left( {SAB} \right)\] có 1 vtpt \[\vec m = \left( {0;\sqrt 2 ; - 1} \right)\]\[ \Rightarrow \cos \varphi \]\[ = \frac{1}{{\sqrt 3 .\sqrt 3 }}\]\[ = \frac{1}{3}\].
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Ta chọn hệ trục tọa độ \(Oxyz\) với \(O \equiv A\) như hình vẽ, chọn \(a = 1\) đơn vị, khi đó ta có tọa độ điểm \(B\left( {1;0;0} \right)\), \(C\left( {0;\sqrt 3 ;0} \right)\) suy ra trung điểm của \(BC\) là \(H\left( {\frac{1}{2};\frac{{\sqrt 3 }}{2};0} \right)\), vì \(H\) là hình chiếu của \(A'\) nên suy ra tọa độ của \(A'\left( {\frac{1}{2};\frac{{\sqrt 3 }}{2};\sqrt 5 } \right)\). Ta tìm tọa độ \(B'\), gọi tọa độ \(B'\left( {x;y;z} \right)\) khi đó ta có \(\overrightarrow {A'B'} = \overrightarrow {OB} \) nên tọa độ \(B'\left( {\frac{3}{2};\frac{{\sqrt 3 }}{2};\sqrt 5 } \right)\). Ta cũng có \(\overrightarrow {B'C} = \left( { - \frac{3}{2};\frac{{\sqrt 3 }}{2}; - \sqrt 5 } \right)\) và \(\overrightarrow {A'B} = \left( {\frac{1}{2}; - \frac{{\sqrt 3 }}{2}; - \sqrt 5 } \right)\). Từ đó ta có \(\cos \varphi = \frac{{\left| {\overrightarrow {A'B} .\overrightarrow {B'C} } \right|}}{{\left| {\overrightarrow {A'B} } \right|.\left| {\overrightarrow {B'C} } \right|}}\) \( = \frac{7}{{2.\sqrt 6 .\sqrt 8 }} = \frac{{7\sqrt 3 }}{{24}}\).
Lời giải

Do \(ABCD.A'B'C'D'\) là hình hộp chữ nhật nên \(A'C'\) là hình chiếu vuông góc của \(A'C\) trên
Ta có \(AC = \sqrt {A{B^2} + A{D^2}} = a\sqrt 3 ;\tan \widehat {CA'C'} = \frac{{CC'}}{{A'C'}} \Rightarrow CC' = a.\)
Kết hợp với giả thiết ta được \(ABB'A'\) là hình vuông và có \(H\) là tâm.
Gọi \(E,F\) lần lượt là hình chiếu vuông góc của \(K\) trên \(A'D'\& A'A.\)
Ta có \(\frac{1}{{A{K^2}}} = \frac{1}{{A'{A^2}}} + \frac{1}{{A{D^2}}} \Rightarrow AK = \frac{{a\sqrt 6 }}{3};\)\(A'K = \sqrt {A'{A^2} - A{K^2}} = \frac{a}{{\sqrt 3 }};\)
\(\frac{1}{{K{F^2}}} = \frac{1}{{K{A^2}}} + \frac{1}{{A'{K^2}}} \Rightarrow KF = \frac{{a\sqrt 2 }}{3};KE = \sqrt {A'{K^2} - K{F^2}} \Rightarrow KE = \frac{a}{3}.\)
Ta chọn hệ trục tọa độ \(Oxyz\) thỏa mãn \(O \equiv A'\) còn \(D',{\rm{ }}B',{\rm{ }}A\) theo thứ tự thuộc các tia \(Ox,{\rm{ }}Oy,{\rm{ }}Oz.\) Khi đó ta có tọa độ các điểm lần lượt là:
\(A(0;0;a),B'(0;a;0),H(0;\frac{a}{2};\frac{a}{2}),K(\frac{{a\sqrt 2 }}{3};0;\frac{a}{3}),E(\frac{{a\sqrt 2 }}{3};0;0),F(0;0;\frac{{a\sqrt 2 }}{3}).\)
Mặt phẳng \(\left( {ABB'A'} \right)\) là mặt phẳng \((yOz)\) nên có VTPT là \({\overrightarrow n _1} = (1;0;0);\)
Ta có \(\left[ {\overrightarrow {AK} ,\overrightarrow {AH} } \right] = \frac{{{a^2}}}{6}{\overrightarrow n _2},{\rm{ }}{\overrightarrow n _2}(2;\sqrt 2 ;\sqrt 2 ).\)
Mặt phẳng \((AKH)\)có VTPT là \({\overrightarrow n _2} = (2;\sqrt 2 ;\sqrt 2 );\)
Gọi \(\alpha \) là góc giữa hai mặt phẳng\(\left( {AHK} \right)\) và \(\left( {ABB'A'} \right)\).
Ta cóLời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.