Câu hỏi:

19/08/2025 78 Lưu

Trong không gian Oxyz, cho hình lăng trụ tam giác \(ABC.{A^\prime }{B^\prime }{C^\prime }\) với \(A(1;2;1),B(7;5;3)\), \(C(4;2;0),{A^\prime }(4;9;9)\). Tìm toạ độ một vectơ chỉ phương của mỗi đường thẳng \(AB,{A^\prime }{C^\prime }\) và \(B{B^\prime }\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Trong không gian Oxyz, cho hình lăng trụ tam giác ABC.A'B'C' với A(1; 2; 1), B(7; 5; 3), C(4; 2; 0), A'(4; 9; 9) (ảnh 1)

Ta có \(\overrightarrow {AB}  = (6;3;2)\) là một vectơ chỉ phương của đường thẳng AB .

\(\overrightarrow {A{A^\prime }}  = (3;7;8)\) là một vectơ chỉ phương của đường thẳng \({\rm{B}}{{\rm{B}}^\prime }\) vì \({\rm{A}}{{\rm{A}}^\prime }//{\rm{B}}{{\rm{B}}^\prime }\).

\(\overrightarrow {AC}  = (3;0; - 1)\) là một vectơ chỉ phương của đường thẳng \({{\rm{A}}^\prime }{{\rm{C}}^\prime }\) vi \({\rm{AC}}//{{\rm{A}}^\prime }{{\rm{C}}^\prime }\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Với \({\rm{t}} = 0\) ta có \(\left\{ {\begin{array}{*{20}{l}}{x = 1}\\{y = 3}\\{z =  - 1}\end{array}} \right.\). Suy ra \({\rm{A}}(1;3; - 1) \in \Delta \). Với \({\rm{t}} = 1\) ta có \(\left\{ {\begin{array}{*{20}{l}}{x = 1}\\{y = 3}\\{z =  - 1}\end{array}} \right.\). Suy ra \({\rm{B}}(0;5;2) \in \Delta \).

b) Thay tọa độ điểm \({\rm{C}}(6; - 7; - 16)\) vào phương trình đường thẳng \(\Delta \) ta được:

6=1t7=3+2t16=1+3tt=5t=5t=5t=5. Do dó, CΔ

Thay tọa độ điểm \({\rm{D}}( - 3;11; - 11)\) vào phương trình đường thẳng \(\Delta \) ta được:

3=1t11=3+2t11=1+3tt=4t=4t=103 (vô lí). Do dó, DΔ

Vậy trong hai điểm C và D , chỉ có điểm C thuộc đường thẳng \(\Delta \).

Lời giải

Cho hình hộp ABCD.A'B'C'D'. Hãy chỉ ra các vectơ chỉ phương của đường thẳng BC' mà điểm đầu và điểm cuối của vectơ đó đều là các đỉnh của hình hộp (ảnh 1)

Đường thẳng \(B{C^\prime }\) nhận các vectơ \(\overline {B{C^\prime }} ,\overrightarrow {{C^\prime }B} ,\overrightarrow {A{D^\prime },} \overline {{D^\prime }A} \) là các vectơ chỉ phương.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP