Câu hỏi:

14/08/2025 7 Lưu

Trong không gian Oxyz, cho hình lăng trụ tam giác \(ABC.{A^\prime }{B^\prime }{C^\prime }\) với \(A(1;2;1),B(7;5;3)\), \(C(4;2;0),{A^\prime }(4;9;9)\). Tìm toạ độ một vectơ chỉ phương của mỗi đường thẳng \(AB,{A^\prime }{C^\prime }\) và \(B{B^\prime }\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Trong không gian Oxyz, cho hình lăng trụ tam giác ABC.A'B'C' với A(1; 2; 1), B(7; 5; 3), C(4; 2; 0), A'(4; 9; 9) (ảnh 1)

Ta có \(\overrightarrow {AB}  = (6;3;2)\) là một vectơ chỉ phương của đường thẳng AB .

\(\overrightarrow {A{A^\prime }}  = (3;7;8)\) là một vectơ chỉ phương của đường thẳng \({\rm{B}}{{\rm{B}}^\prime }\) vì \({\rm{A}}{{\rm{A}}^\prime }//{\rm{B}}{{\rm{B}}^\prime }\).

\(\overrightarrow {AC}  = (3;0; - 1)\) là một vectơ chỉ phương của đường thẳng \({{\rm{A}}^\prime }{{\rm{C}}^\prime }\) vi \({\rm{AC}}//{{\rm{A}}^\prime }{{\rm{C}}^\prime }\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có phương trình tham số của \(d\) là: \(\left\{ {\begin{array}{*{20}{l}}{x = 1 + 4t}\\{y = 2 + 5t}\\{z = 3 - 7t}\end{array}} \right.\)

Thay \(x = 1\) vào phương trình \(x = 1 + 4t\), ta được \(1 = 1 + 4t\), suy ra \(t = 0\).

Thay \(y = 1\) và \(t = 0\) vào phương trình \(y = 2 + 5t\), ta thấy phương trình không thoả mãn. Suy ra đường thẳng \(d\) không đi qua điểm \(A\).

Lời giải

Trong không gian Oxyz, cho hình chóp O.ABC có A(2; 0; 0), B(0; 4; 0) và C(0; 0; 7). Tìm toạ độ một vectơ chỉ phương của mỗi đường thẳng AB, AC. (ảnh 1)

a) Ta có \(\overrightarrow {AB}  = ( - 2;4;0)\) là một vectơ chỉ phương của đường thẳng AB; \(\overrightarrow {AC}  = ( - 2;0;7)\) là một vectơ chỉ phương của đường thẳng AC.

b) Vì \(\vec v = ( - 1;2;0) = \frac{1}{2}\overrightarrow {AB} \) nên \(\vec v\) là một vectơ chỉ phương của đường thẳng AB

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP