Câu hỏi:

14/08/2025 7 Lưu

Viết phương trình tham số của đường thẳng \(d\) đi qua điểm \({M_0}(1;2;3)\) và nhận \(\vec a = (4;5; - 7)\) làm vectơ chỉ phương. Đường thẳng \(d\) có đi qua điểm \(A(1;1;5)\) không?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có phương trình tham số của \(d\) là: \(\left\{ {\begin{array}{*{20}{l}}{x = 1 + 4t}\\{y = 2 + 5t}\\{z = 3 - 7t}\end{array}} \right.\)

Thay \(x = 1\) vào phương trình \(x = 1 + 4t\), ta được \(1 = 1 + 4t\), suy ra \(t = 0\).

Thay \(y = 1\) và \(t = 0\) vào phương trình \(y = 2 + 5t\), ta thấy phương trình không thoả mãn. Suy ra đường thẳng \(d\) không đi qua điểm \(A\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Từ phương trình tham số, ta có \(\vec a = (6;2;4)\) là một vectơ chỉ phương của \(d\). Chọn \(\vec b = \frac{1}{2}\vec a = (3;1;2)\), ta có \(\vec b\) cũng là một vectơ chỉ phương của \(d\).

b) Thay \(t = 0\) vào phương trình tham số của \(d\), ta được: \(\left\{ {\begin{array}{*{20}{l}}{x =  - 2 + 6.0}\\{y = 11 + 2.0}\\{z = 4.0}\end{array}{\rm{ hay }}\left\{ {\begin{array}{*{20}{l}}{x =  - 2}\\{y = 11}\\{z = 0.}\end{array}} \right.} \right.\)

Vậy \(A( - 2;11;0)\).

Tương tự, với \(t = 2\) thì \(B(10;15;8)\), với \(t =  - 3\) thì \(C( - 20;5; - 12)\).

Lời giải

Đường thẳng d đi qua điểm \({\rm{A}}(5;0; - 7)\) và nhận \(\vec v = (9;0; - 2)\) làm vectơ chỉ phương có phương trình tham số là \(\left\{ {\begin{array}{*{20}{l}}{x = 5 + 9t}\\{y = 0}\\{z =  - 7 - 2t}\end{array}} \right.\).

Thay tọa độ điểm M vào phương trình đường thẳng d ta có:

\(\left\{ {\begin{array}{*{20}{l}}{ - 4 = 5 + 9t}\\{0 = 0}\\{ - 5 =  - 7 - 2t}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{t =  - 1}\\{t =  - 1}\end{array}} \right.} \right.{\rm{ (luôn đúng)}}{\rm{. }}\)Vậy điểm \({\rm{M}} \in {\rm{d}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP