Trong không gian với hệ toạ độ Oxyz, cho hai điểm \(A(1;2;3)\) và \(B(3;5;9)\).
a) Hãy chỉ ra một vectơ chỉ phương của đường thẳng AB.
b) Viết phương trình tham số của đường thẳng AB.
c) Viết phương trình chính tắc của đường thẳng AB.
Trong không gian với hệ toạ độ Oxyz, cho hai điểm \(A(1;2;3)\) và \(B(3;5;9)\).
a) Hãy chỉ ra một vectơ chỉ phương của đường thẳng AB.
b) Viết phương trình tham số của đường thẳng AB.
c) Viết phương trình chính tắc của đường thẳng AB.
Quảng cáo
Trả lời:
a) Một vectơ chỉ phương của đường thẳng AB là \(\overrightarrow {AB} = (2;3;6)\).
b) Phương trình tham số của đường thẳng AB đi qua điểm \({\rm{A}}(1;2;3)\) và có vectơ chỉ phương \(\overrightarrow {AB} = (2;3;6)\) là: \(\left\{ {\begin{array}{*{20}{l}}{x = 1 + 2t}\\{y = 2 + 3t{\rm{ (t là tham số )}}{\rm{. }}}\\{z = 3 + 6t}\end{array}} \right.\)
c) Phương trình chính tắc của đường thẳng AB đi qua điểm \({\rm{A}}(1;2;3)\) và có vectơ chỉ phương \(\overrightarrow {AB} = (2;3;6)\) là: \(\frac{{x - 1}}{2} = \frac{{y - 2}}{3} = \frac{{z - 3}}{6}\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Đường thẳng \(B{C^\prime }\) nhận các vectơ \(\overline {B{C^\prime }} ,\overrightarrow {{C^\prime }B} ,\overrightarrow {A{D^\prime },} \overline {{D^\prime }A} \) là các vectơ chỉ phương.
Lời giải
a) Vì \(M\) thuộc \(\Delta \) nên \(M(2 - 3t;4 + t;5 - 2t)(t \in \mathbb{R})\).
Ta có: \(2 - 3t = 5\), suy ra \(t = - 1\). Do đó \(4|t = 4|( - 1) = 3,5 - 2t = 5 - 2 \cdot ( - 1) = 7\). Vậy \(M(5;3;7)\).
b) Xét hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{8 = 2 - 3t}\\{2 = 4 + t}\\{9 = 5 - 2t}\end{array} \Leftrightarrow t = - 2} \right.\). Suy ra tồn tại số thực \(t\) thoả mãn hệ phương trình đó. Vậy điểm \(N(8;2;9)\) thuộc đường thẳng \(\Delta \).
c) Xét hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{ - 1 = 2 - 3t}\\{5 = 4 + t}\\{4 = 5 - 2t}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{t = 1}\\{t = 1}\\{t = \frac{1}{2}}\end{array}} \right.} \right.\). Suy ra không tồn tại số thực \(t\) thoả mãn hệ phương trình đó. Vậy điểm \(P( - 1;5;4)\) không thuộc đường thẳng \(\Delta \).
Do \(\vec u = ( - 3;1; - 2)\) là một vectơ chỉ phương của \(\Delta \) và \(\Delta //{\Delta ^\prime }\) nên \(\vec u = ( - 3;1; - 2)\) cũng là một vectơ chỉ phương của \(\Delta \) '.
Phương trình tham số của đường thẳng \({\Delta ^\prime }\) là: \(\left\{ {\begin{array}{*{20}{l}}{x = - 1 - 3{t^\prime }}\\{y = 5 + {t^\prime }}\\{z = 4 - 2{t^\prime }}\end{array}} \right.\) ( \({t^\prime }\) là tham số).
d) Vì \(I\) thuộc \(\Delta \) nên \(I(2 - 3a;4 + a;5 - 2a)(a \in \mathbb{R})\). Mà \(I\) thuộc \((P)\) nên \((2 - 3a) - (4 + a) + (5 - 2a) + 9 = 0 \Leftrightarrow a = 2\). Vậy \(I( - 4;6;1)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.