Câu hỏi:

19/08/2025 31 Lưu

Trong không gian Oxyz, cho đường thẳng \(d:\left\{ {\begin{array}{*{20}{l}}{x =  - 1 + 2t}\\{y = 3 - 3t}\\{z = 5 + 4t}\end{array}\quad (t \in \mathbb{R})} \right.\).

a) Hãy tìm toạ độ một vectơ chỉ phương của \(d\).

b) Hãy tìm toạ độ của các điểm thuộc \(d\) ứng với các giá trị \(t = 0,t =  - 1,t = 2\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Một vectơ chỉ phương của \(d\) là \(\vec a = (2; - 3;4)\).

b) Với \(t = 0\), thay \(t = 0\) vào phương trình của \(d\), ta có \(\left\{ {\begin{array}{*{20}{l}}{x =  - 1 + 2.0 =  - 1}\\{y = 3 - 3.0 = 3}\\{z = 5 + 4.0 = 5.}\end{array}} \right.\)

Vậy điểm \({M_1}( - 1;3;5)\) thuộc \(d\) ứng với \(t = 0\).

Tương tự với \(t =  - 1\) và \(t = 2\), ta có các điểm thuộc \(d\) tương ứng là \({M_2}( - 3;6;1),{M_3}(3; - 3;13)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình hộp ABCD.A'B'C'D'. Hãy chỉ ra các vectơ chỉ phương của đường thẳng BC' mà điểm đầu và điểm cuối của vectơ đó đều là các đỉnh của hình hộp (ảnh 1)

Đường thẳng \(B{C^\prime }\) nhận các vectơ \(\overline {B{C^\prime }} ,\overrightarrow {{C^\prime }B} ,\overrightarrow {A{D^\prime },} \overline {{D^\prime }A} \) là các vectơ chỉ phương.

Lời giải

a) Với \({\rm{t}} = 0\) ta có \(\left\{ {\begin{array}{*{20}{l}}{x = 1}\\{y = 3}\\{z =  - 1}\end{array}} \right.\). Suy ra \({\rm{A}}(1;3; - 1) \in \Delta \). Với \({\rm{t}} = 1\) ta có \(\left\{ {\begin{array}{*{20}{l}}{x = 1}\\{y = 3}\\{z =  - 1}\end{array}} \right.\). Suy ra \({\rm{B}}(0;5;2) \in \Delta \).

b) Thay tọa độ điểm \({\rm{C}}(6; - 7; - 16)\) vào phương trình đường thẳng \(\Delta \) ta được:

6=1t7=3+2t16=1+3tt=5t=5t=5t=5. Do dó, CΔ

Thay tọa độ điểm \({\rm{D}}( - 3;11; - 11)\) vào phương trình đường thẳng \(\Delta \) ta được:

3=1t11=3+2t11=1+3tt=4t=4t=103 (vô lí). Do dó, DΔ

Vậy trong hai điểm C và D , chỉ có điểm C thuộc đường thẳng \(\Delta \).