Câu hỏi:

14/08/2025 5 Lưu

Trong không gian Oxyz, cho đường thẳng \(d:\left\{ {\begin{array}{*{20}{l}}{x =  - 1 + 2t}\\{y = 3 - 3t}\\{z = 5 + 4t}\end{array}\quad (t \in \mathbb{R})} \right.\).

a) Hãy tìm toạ độ một vectơ chỉ phương của \(d\).

b) Hãy tìm toạ độ của các điểm thuộc \(d\) ứng với các giá trị \(t = 0,t =  - 1,t = 2\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Một vectơ chỉ phương của \(d\) là \(\vec a = (2; - 3;4)\).

b) Với \(t = 0\), thay \(t = 0\) vào phương trình của \(d\), ta có \(\left\{ {\begin{array}{*{20}{l}}{x =  - 1 + 2.0 =  - 1}\\{y = 3 - 3.0 = 3}\\{z = 5 + 4.0 = 5.}\end{array}} \right.\)

Vậy điểm \({M_1}( - 1;3;5)\) thuộc \(d\) ứng với \(t = 0\).

Tương tự với \(t =  - 1\) và \(t = 2\), ta có các điểm thuộc \(d\) tương ứng là \({M_2}( - 3;6;1),{M_3}(3; - 3;13)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trong không gian Oxyz, cho hình chóp O.ABC có A(2; 0; 0), B(0; 4; 0) và C(0; 0; 7). Tìm toạ độ một vectơ chỉ phương của mỗi đường thẳng AB, AC. (ảnh 1)

a) Ta có \(\overrightarrow {AB}  = ( - 2;4;0)\) là một vectơ chỉ phương của đường thẳng AB; \(\overrightarrow {AC}  = ( - 2;0;7)\) là một vectơ chỉ phương của đường thẳng AC.

b) Vì \(\vec v = ( - 1;2;0) = \frac{1}{2}\overrightarrow {AB} \) nên \(\vec v\) là một vectơ chỉ phương của đường thẳng AB

Lời giải

Ta có phương trình tham số của \(d\) là: \(\left\{ {\begin{array}{*{20}{l}}{x = 1 + 4t}\\{y = 2 + 5t}\\{z = 3 - 7t}\end{array}} \right.\)

Thay \(x = 1\) vào phương trình \(x = 1 + 4t\), ta được \(1 = 1 + 4t\), suy ra \(t = 0\).

Thay \(y = 1\) và \(t = 0\) vào phương trình \(y = 2 + 5t\), ta thấy phương trình không thoả mãn. Suy ra đường thẳng \(d\) không đi qua điểm \(A\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP