Câu hỏi:

14/08/2025 5 Lưu

Kiểm tra tính song song hoặc trùng nhau của các cặp đường thẳng sau:

a) \(d:\left\{ {\begin{array}{*{20}{l}}{x = 7 + 4t}\\{y = 3 - 2t}\\{z = 2 - 2t}\end{array}} \right.\) và d': \(\frac{{x - 3}}{2} = \frac{{y - 5}}{{ - 1}} = \frac{{z - 4}}{{ - 1}}\);

b) \(d:\frac{x}{3} = \frac{y}{3} = \frac{{z - 1}}{4}\) và d': \(\frac{{x - 2}}{3} = \frac{{y - 9}}{3} = \frac{{z - 5}}{4}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Đường thẳng d đi qua \({\rm{M}}(7;3;2)\) và có vectơ chí phương \(\vec a = (4; - 2; - 2)\)

Đường thắng d' đi qua \({\rm{N}}(3;5;4)\) và có vectơ chí phương \(\overrightarrow {{a^\prime }}  = (2; - 1; - 1) = \frac{1}{2}\vec a\)

Thay tọa độ điếm M vào phương trình đường thắng d' ta được

\(\frac{{7 - 3}}{2} = \frac{{3 - 5}}{{ - 1}} = \frac{{2 - 4}}{{ - 1}}\) (luôn đúng). Suy ra điếm \({\rm{M}} \in {{\rm{d}}^\prime }\).

Vậy \({\rm{d}} \equiv d\) '.

b) Đường thắng d đi qua \({\rm{M}}(0;0;1)\) và có vectơ chỉ phương \(\vec a = (3;3;4)\)

Đường thẳng d' đi qua \({\rm{N}}(2;9;5)\) và có vectơ chí phương \(\overrightarrow {{a^\prime }}  = (3;3;4) = \vec a\)

Thay tọa độ điếm M vào phương trình đường thắng \({{\rm{d}}^\prime }\) ta có:

\(\frac{{0 - 2}}{3} = \frac{{0 - 9}}{3} = \frac{{1 - 5}}{4}\) (vô lí). Suy ra \(M \notin {d^\prime }\).

Vậy d // d'.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đường thẳng \({\Delta _1}\) đi qua \({\rm{A}}(1;3;2)\) và có vectơ chỉ phương \(\overrightarrow {{u_1}}  = (3;1;2)\)

Đường thẳng \({\Delta _2}\) đi qua \({\rm{B}}(1; - 1;0)\) và có vectơ chỉ phương \(\overrightarrow {{u_2}}  = (3;1;2)\)

vi \(\overrightarrow {{u_1}}  = \overrightarrow {{u_2}}  = (3;1;2)\) và \({\rm{A}} \notin {\Delta _2}\) do đó \({\Delta _1}\) và \({\Delta _2}\) song song với nhau.

b) Có \(\overrightarrow {AB}  = (0; - 4; - 2)\)

Mặt phắng (P) chứa \({\Delta _1}\) và \({\Delta _2}\) có một vectơ pháp tuyến là \(\vec n = \left[ {\overrightarrow {AB} ,\overrightarrow {{u_1}} } \right] = ( - 6; - 6;12)\)

Mặt phắng \(({\rm{P}})\) đi qua \({\rm{A}}(1;3;2)\) và có vectơ pháp tuyến \(\vec n = ( - 6; - 6;12)\) có phương trình là: \( - 6({\rm{X}} - \) 1) \( - 6(y - 3) + 12(z - 2) = 0 \Leftrightarrow 6x + 6y - 12z = 0\) hay \(x + y - 2z = 0\).

Lời giải

\(d\) và \({d^\prime }\) lần lượt có vectơ chỉ phương là \(\vec a = ( - 1;2;4)\) và \(\overrightarrow {{a^\prime }}  = (2;3; - 1)\).

Ta có \(\vec a \cdot \overrightarrow {{a^\prime }}  =  - 2 + 6 - 4 = 0\). Suy ra \(\vec a \bot \overrightarrow {{a^\prime }} \). Vậy \(d \bot {d^\prime }\).