Câu hỏi:

14/08/2025 4 Lưu

Kiểm tra tính vuông góc của các cặp đường thẳng sau:

a) \(d:\frac{{x - 2}}{3} = \frac{{y - 1}}{5} = \frac{{z - 3}}{1}\) và \({d^\prime }:\left\{ {\begin{array}{*{20}{l}}{x =  - 2 + t}\\{y = 7 + t}\\{z = 9 - 8t}\end{array}} \right.\)

b) \(d:\frac{{x - 2}}{3} = \frac{{y - 1}}{5} = \frac{{z - 3}}{1}\) và \({d^\prime }:\frac{{x + 2}}{2} = \frac{{y - 7}}{1} = \frac{{z - 9}}{1}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) \(d\) và \({d^\prime }\) có vectơ chỉ phương lần lượt là \(\vec a = (3;5;1)\) và \({\vec a^\prime } = (1;1; - 8)\).

Ta có \(\vec a \cdot {\vec a^\prime } = 3 + 5 - 8 = 0\). Vậy \(d\) và \({d^\prime }\) vuông góc với nhau.

b) \(d\) và \({d^\prime }\) có vectơ chỉ phương lần lượt là \(\vec a = (3;5;1)\) và \({\vec a^\prime } = (2;1;1)\).

Ta có \(\vec a \cdot {\vec a^\prime } = 6 + 5 + 1 \ne 0\). Vậy \(d\) và \({d^\prime }\) không vuông góc với nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đường thẳng \({\Delta _1}\) đi qua \({\rm{A}}(1;3;2)\) và có vectơ chỉ phương \(\overrightarrow {{u_1}}  = (3;1;2)\)

Đường thẳng \({\Delta _2}\) đi qua \({\rm{B}}(1; - 1;0)\) và có vectơ chỉ phương \(\overrightarrow {{u_2}}  = (3;1;2)\)

vi \(\overrightarrow {{u_1}}  = \overrightarrow {{u_2}}  = (3;1;2)\) và \({\rm{A}} \notin {\Delta _2}\) do đó \({\Delta _1}\) và \({\Delta _2}\) song song với nhau.

b) Có \(\overrightarrow {AB}  = (0; - 4; - 2)\)

Mặt phắng (P) chứa \({\Delta _1}\) và \({\Delta _2}\) có một vectơ pháp tuyến là \(\vec n = \left[ {\overrightarrow {AB} ,\overrightarrow {{u_1}} } \right] = ( - 6; - 6;12)\)

Mặt phắng \(({\rm{P}})\) đi qua \({\rm{A}}(1;3;2)\) và có vectơ pháp tuyến \(\vec n = ( - 6; - 6;12)\) có phương trình là: \( - 6({\rm{X}} - \) 1) \( - 6(y - 3) + 12(z - 2) = 0 \Leftrightarrow 6x + 6y - 12z = 0\) hay \(x + y - 2z = 0\).

Lời giải

\(d\) và \({d^\prime }\) lần lượt có vectơ chỉ phương là \(\vec a = ( - 1;2;4)\) và \(\overrightarrow {{a^\prime }}  = (2;3; - 1)\).

Ta có \(\vec a \cdot \overrightarrow {{a^\prime }}  =  - 2 + 6 - 4 = 0\). Suy ra \(\vec a \bot \overrightarrow {{a^\prime }} \). Vậy \(d \bot {d^\prime }\).