Câu hỏi:

14/08/2025 5 Lưu

Trong không gian Oxyz , chứng minh rằng hai đường thẳng sau vuông góc với nhau và chéo nhau:

\({\Delta _1}:\left\{ {\begin{array}{*{20}{l}}{x = 1 + t}\\{y = 2 - t}\\{z =  - 1 + 2t}\end{array}{\rm{ và  }}{\Delta _2}:\frac{{x - 4}}{3} = \frac{{y + 1}}{1} = \frac{z}{{ - 1}}.} \right.\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đường thẳng \({\Delta _1}\) đi qua điểm \({A_1}(1;2; - 1)\) và có vectơ chỉ phương \(\overrightarrow {{u_1}}  = (1; - 1,2)\).

Đường thẳng \({\Delta _2}\) đi qua điểm \({{\rm{A}}_2}(4; - 1;0)\) và có vectơ chỉ phương \(\overrightarrow {{u_2}}  = (3;1; - 1)\). Vì \(\overrightarrow {{u_1}}  \cdot \overrightarrow {{u_2}}  = 1 \cdot 3 + ( - 1) \cdot 1 + 2 \cdot ( - 1) = 0\) nên \(\overrightarrow {{u_1}} \) vuông góc với \(\overrightarrow {{u_2}} \). Do đó \({\Delta _1}\) vuông góc với \({\Delta _2}\).

Ta có \(\overrightarrow {{A_1}{A_2}}  = (3; - 3;1)\) và \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = ( - 1;7;4)\).

Do \(\overrightarrow {{A_1}{A_2}}  \cdot \left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = 3 \cdot ( - 1) + ( - 3) \cdot 7 + 1 \cdot 4 =  - 20 \ne 0\) nên \({\Delta _1}\) và \({\Delta _2}\) chéo nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đường thẳng \({\Delta _1}\) đi qua điểm \({M_1}(1;2;3)\) và có \({\vec u_1} = (5; - 1;2)\) là vectơ chỉ phương. Đường thẳng \({\Delta _2}\) đi qua điểm \({M_2}(2;4;1)\) và có \({\vec u_2} = (10; - 2;4)\) là vectơ chỉ phương. Ta có: \(2{\vec u_1} = (10; - 2;4) = {\vec u_2}\), suy ra \({\vec u_1},{\vec u_2}\) cùng phương;

\(\overrightarrow {{M_1}{M_2}}  = (1;2; - 2)\) và \(\frac{1}{5} \ne \frac{2}{{ - 1}}\) nên \({\vec u_1},\overrightarrow {{M_1}{M_2}} \) không cùng phương. Vậy \({\Delta _1}//{\Delta _2}\).

b) Đường thẳng \({\Delta _1}\) đi qua điểm \({M_1}(2;3; - 4)\) và có \({\vec u_1} = (3;2;1)\) là vectơ chỉ phương. Đường thẳng \({\Delta _2}\) đi qua điểm \({M_2}( - 2;1;2)\) và có \({\vec u_2} = (2;1; - 3)\) là vectơ chỉ phương. Ta có: \(\frac{2}{3} \ne \frac{1}{2}\), suy ra \({\vec u_1},{\vec u_2}\) không cùng phương; \(\overrightarrow {{M_1}{M_2}}  = ( - 4; - 2;6),\left[ {{{\vec u}_1},{{\vec u}_2}} \right] = \left( {\left| {\begin{array}{*{20}{c}}2&1\\1&{ - 3}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&3\\{ - 3}&2\end{array}} \right|;\left| {\begin{array}{*{20}{l}}3&2\\2&1\end{array}} \right|} \right) = ( - 7;11; - 1){\rm{. }}\)

Do \(\left[ {{{\vec u}_1},{{\vec u}_2}} \right] \cdot \overrightarrow {{M_1}{M_2}}  = ( - 7) \cdot ( - 4) + 11 \cdot ( - 2) + ( - 1) \cdot 6 = 0\) nên \({\vec u_1},{\vec u_2},\overrightarrow {{M_1}{M_2}} \) đồng phẳng.

Vậy \({\Delta _1}\) cắt \({\Delta _2}\).

c) Đường thẳng \({\Delta _1}\) đi qua điểm \({M_1}( - 3;1;2)\) và có \({\vec u_1} = (1; - 1;2)\) là vectơ chỉ phương. Đường thẳng \({\Delta _2}\) đi qua điểm \({M_2}(6;8; - 1)\) và có \({\vec u_2} = (3;2; - 1)\) là vectơ chi phương. Ta có:

\(\overrightarrow {{M_1}{M_2}}  = (9;7; - 3),\left[ {{{\vec u}_1},{{\vec u}_2}} \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 1}&2\\2&{ - 1}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&1\\{ - 1}&3\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&{ - 1}\\3&2\end{array}} \right|} \right) = ( - 3;7;5).\)

Do \(\left[ {{{\vec u}_1},{{\vec u}_2}} \right] \cdot \overrightarrow {{M_1}{M_2}}  = ( - 3) \cdot 9 + 7 \cdot 7 + 5 \cdot ( - 3) = 7 \ne 0\) nên \({\vec u_1},{\vec u_2},\overrightarrow {{M_1}{M_2}} \) không đồng phẳng.

Vậy \({\Delta _1}\) và \({\Delta _2}\) chéo nhau.

Lời giải

a) Đường thẳng \({\Delta _1}\) đi qua \({\rm{A}}(1;3;2)\) và có vectơ chỉ phương \(\overrightarrow {{u_1}}  = (3;1;2)\)

Đường thẳng \({\Delta _2}\) đi qua \({\rm{B}}(1; - 1;0)\) và có vectơ chỉ phương \(\overrightarrow {{u_2}}  = (3;1;2)\)

vi \(\overrightarrow {{u_1}}  = \overrightarrow {{u_2}}  = (3;1;2)\) và \({\rm{A}} \notin {\Delta _2}\) do đó \({\Delta _1}\) và \({\Delta _2}\) song song với nhau.

b) Có \(\overrightarrow {AB}  = (0; - 4; - 2)\)

Mặt phắng (P) chứa \({\Delta _1}\) và \({\Delta _2}\) có một vectơ pháp tuyến là \(\vec n = \left[ {\overrightarrow {AB} ,\overrightarrow {{u_1}} } \right] = ( - 6; - 6;12)\)

Mặt phắng \(({\rm{P}})\) đi qua \({\rm{A}}(1;3;2)\) và có vectơ pháp tuyến \(\vec n = ( - 6; - 6;12)\) có phương trình là: \( - 6({\rm{X}} - \) 1) \( - 6(y - 3) + 12(z - 2) = 0 \Leftrightarrow 6x + 6y - 12z = 0\) hay \(x + y - 2z = 0\).