Trong không gian \(Oxyz\), cho đường thẳng \(d:\frac{{x - 2}}{1} = \frac{{y - 1}}{{ - 2}} = \frac{{z + 1}}{3}\). Điểm nào dưới đây thuộc \(d\)?
Quảng cáo
Trả lời:
Chọn C
Cho \(\left\{ \begin{array}{l}x - 2 = 0\\y - 1 = 0\\z + 1 = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = 2\\y = 1\\z = - 1\end{array} \right.\) vậy \(P\left( {2;1; - 1} \right) \in d\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn D
Ta có một vectơ chỉ phương của \[d\] là \(\overrightarrow {{u_1}} = \left( { - 1;2;3} \right)\).
\(\overrightarrow {{u_2}} = - 3\overrightarrow {{u_1}} \), \(\overrightarrow {{u_3}} = - \overrightarrow {{u_1}} \) \( \Rightarrow \) các vectơ \(\overrightarrow {{u_2}} ,\overrightarrow {{u_3}} \) cũng là vectơ chỉ phương của \[d\].
Không tồn tại số \(k\) để \(\overrightarrow {{u_4}} = k\overrightarrow {.{u_1}} \) nên \(\overrightarrow {{u_4}} = \left( { - 2;4;3} \right)\) không phải là vectơ chỉ phương của \[d\].
Lời giải
Chọn C
Xét đường thẳng được cho ở câu C, có một vectơ chỉ phương là \(\left( { - 2; - 1; - 1} \right) = - \left( {2;1;1} \right)\)(thỏa đề bài).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.