Câu hỏi:

16/08/2025 8 Lưu

Trong không gian với hệ tọa độ Oxyz cho đường thẳng \(d:\left\{ {\begin{array}{*{20}{c}}{x = 1 - t}\\{y = 2 + 2t}\\{z = 3 + t}\end{array}} \right.\) và mặt phẳng (P):\(x - y + 3 = 0\). Tính số đo góc giữa đường thẳng d và mặt phẳng (P).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn A

Đường thẳng \(d\)có véc tơ chỉ phương là \(\overrightarrow u  = \left( { - 1;2;1} \right)\)

Mặt phẳng \(\left( P \right)\) có véc tơ pháp tuyến là \(\overrightarrow n  = \left( {1; - 1;0} \right)\)

Gọi \(\alpha \)là góc giữa Đường thẳng \(d\)và Mặt phẳng \(\left( P \right)\). Khi đó ta có

sinα=u.nun=1.1+2.1+1.012+22+12.12+12+02=323=32

Do đó α=600

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Chọn D

Ta có một vectơ chỉ phương của \[d\] là \(\overrightarrow {{u_1}}  = \left( { - 1;2;3} \right)\).

\(\overrightarrow {{u_2}}  =  - 3\overrightarrow {{u_1}} \), \(\overrightarrow {{u_3}}  =  - \overrightarrow {{u_1}} \) \( \Rightarrow \) các vectơ \(\overrightarrow {{u_2}} ,\overrightarrow {{u_3}} \) cũng là vectơ chỉ phương của \[d\].

Không tồn tại số \(k\) để \(\overrightarrow {{u_4}}  = k\overrightarrow {.{u_1}} \) nên \(\overrightarrow {{u_4}}  = \left( { - 2;4;3} \right)\) không phải là vectơ chỉ phương của \[d\].

Câu 2

Lời giải

Chọn C

Xét đường thẳng được cho ở câu C, có một vectơ chỉ phương là \(\left( { - 2; - 1; - 1} \right) =  - \left( {2;1;1} \right)\)(thỏa đề bài).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP