Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\), \(SAB\) là tam giác đều và \(\left( {SAB} \right)\) vuông góc với \(\left( {ABCD} \right)\). Tính \(\cos \varphi \) với \(\varphi \) là góc tạp bởi \(\left( {SAC} \right)\) và \(\left( {SCD} \right)\).
Quảng cáo
Trả lời:
Chọn C

Chú ý: Ta có thể giải bài toán với cạnh hình vuông \[a = 1\].
Gọi \[O,M\] lần lượt là trung điểm của \[AB,CD\]. Vì \[SAB\] là tam giác đều và \[\left( {SAB} \right)\] vuông góc với \[\left( {ABCD} \right)\]nên \[SO \bot \left( {ABCD} \right)\].
Xét hệ trục \[Oxyz\] có \[O\left( {0;0;0} \right),M\left( {1;0;0} \right),A\left( {0;\frac{1}{2};0} \right),S\left( {0;0;\frac{{\sqrt 3 }}{2}} \right)\]. Khi đó \[C\left( {1;\frac{{ - 1}}{2};0} \right),D\left( {1;\frac{1}{2};0} \right)\].
Suy ra \[\overrightarrow {SA} = \left( {0;\frac{1}{2};\frac{{ - \sqrt 3 }}{2}} \right),\overrightarrow {AC} \left( {1; - 1;0} \right),\overrightarrow {SC} = \left( {1;\frac{{ - 1}}{2};\frac{{ - \sqrt 3 }}{2}} \right),\overrightarrow {CD} = \left( {0;1;0} \right)\].
Mặt phẳng \[\left( {SAC} \right)\] có véc tơ pháp tuyến \[\overrightarrow {{n_1}} = \left[ {\overrightarrow {SA} ,\overrightarrow {AC} } \right] = \left( {\frac{{ - \sqrt 3 }}{2};\frac{{ - \sqrt 3 }}{2};\frac{{ - 1}}{2}} \right)\].
Mặt phẳng \[\left( {SAD} \right)\] có véc tơ pháp tuyến \[\overrightarrow {{n_1}} = \left[ {\overrightarrow {SC} ,\overrightarrow {CD} } \right] = \left( {\frac{{\sqrt 3 }}{2};0;1} \right)\].
Vậy \[\cos \varphi = \frac{{\left| {\overrightarrow {{n_1}} .\overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right|.\left| {\overrightarrow {{n_2}} } \right|}} = \frac{5}{7}\].
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn A
Ta có \(\overrightarrow {AB} = \left( {2; - 2;2} \right)\), \(\overrightarrow {AC} = \left( {1;0; - 1} \right)\).
Mặt phẳng \(\left( {ABC} \right)\) có một véctơ pháp tuyến là \(\overrightarrow n = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {2;4;2} \right)\).
Đường thẳng vuông góc với mặt phẳng \(\left( {ABC} \right)\) có một véctơ chỉ phương là \(\overrightarrow u = \left( {1;2;1} \right)\).
Đường thẳng đi qua \(A\) và vuông góc với mặt phẳng \(\left( {ABC} \right)\) có phương trình là\(\frac{{x - 1}}{1} = \frac{{y - 2}}{2} = \frac{{z + 1}}{1}\).
Lời giải
Chọn C
Cách 1:

Chọn hệ trục tọa độ \(Oxyz\) như hình vẽ.
Ta có: \(O\left( {0\,;\,0\,;\,0} \right)\), \(A\left( {0\,;\,a\,;\,0} \right)\), \(B\left( {a\,;\,0\,;\,0} \right)\), \(C\left( {0\,;\,0\,;\,a} \right)\), \(M\left( {\frac{a}{2}\,;\,\frac{a}{2}\,;\,0} \right)\).
Khi đó ta có:Cách 2:

Ta có \[\left\{ \begin{array}{l}\overrightarrow {OM} = \frac{1}{2}\left( {\overrightarrow {OA} + \overrightarrow {OB} } \right)\\\overrightarrow {BC} = \overrightarrow {OC} - \overrightarrow {OB} \end{array} \right. \Rightarrow \overrightarrow {OM} .\overrightarrow {BC} = - \frac{1}{2}O{B^2} = - \frac{{{a^2}}}{2}\].
\[BC = \sqrt {O{B^2} + O{C^2}} = a\sqrt 2 \] và \[OM = \frac{1}{2}AB = \frac{1}{2}\sqrt {O{A^2} + O{B^2}} = \frac{{a\sqrt 2 }}{2}\].
Do đó:Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.