Cho hình lập phương \(ABC{\rm{D}}.A'B'C'D'\)có cạnh a. Góc giữa hai mặt phẳng \(\left( {A'B'CD} \right)\) và \(\left( {ACC'A'} \right)\) bằng
Cho hình lập phương \(ABC{\rm{D}}.A'B'C'D'\)có cạnh a. Góc giữa hai mặt phẳng \(\left( {A'B'CD} \right)\) và \(\left( {ACC'A'} \right)\) bằng
A. 600
Quảng cáo
Trả lời:

Chọn A

Chọn hệ trục tọa độ Oxyz sao cho gốc tọa độ \(O \equiv A',\,Ox \equiv A'D',\,Oy \equiv A'B',\,\,Oz \equiv A'A.\)
Khi đó:\(A'(0;0;0)\), \(D'(a;0;0)\), \(B'(0;a;0)\), \(C'(a;a;0)\),
\(A(0;0;a)\), \(D(a;0;a)\), \(B(0;a;a)\), \(C(a;a;a)\).
\[ \Rightarrow \overrightarrow {A'B'} = (0;a;0),\,\overrightarrow {A'D} = (a;0;a),\,\overrightarrow {A'A} = (0;0;a),\,\overrightarrow {A'C'} = (a;a;0).\]
\(\left[ {\overrightarrow {A'B'} ,\overrightarrow {A'D} } \right] = ({a^2};0; - {a^2}).\)
Chọn \(\overrightarrow {{n_1}} = (1;0; - 1)\) là vectơ pháp tuyến của mặt phẳng \(\left( {A'B'CD} \right)\).
\(\left[ {\overrightarrow {A'A} ,\overrightarrow {A'C} } \right] = ( - {a^2};{a^2};0).\)
Chọn \(\overrightarrow {{n_2}} = ( - 1;1;0)\) là vectơ pháp tuyến của mặt phẳng \(\left( {ACC'A'} \right)\).
Góc giữa hai mặt phẳng \(\left( {A'B'CD} \right)\)và \(\left( {ACC'A'} \right)\) là:
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn B
Gọi \(O = AC \cap BD\).
Tam giác \(SAO\) vuông : \(SO = \sqrt {S{A^2} - A{O^2}} = \frac{{a\sqrt 6 }}{2}\)
Gắn tọa độ như hình vẽ

\(A\left( {0;0;0} \right)\), \(B\left( {a;0;0} \right)\), \(C\left( {a;a;0} \right)\), \(D\left( {0;a;0} \right)\), \(O\left( {\frac{a}{2};\frac{a}{2};0} \right)\), \(S\left( {\frac{a}{2};\frac{a}{2};\frac{{a\sqrt 6 }}{2}} \right)\).
Vì \(G\) là trọng tâm tam giác \(SCD\) nên \(G\left( {\frac{a}{2};\frac{{5a}}{6};\frac{{a\sqrt 6 }}{6}} \right)\).
Ta có : \(\overrightarrow {AS} = \left( {\frac{a}{2};\frac{a}{2};\frac{{a\sqrt 6 }}{2}} \right)\) \( = \frac{a}{2}\left( {1;1;\sqrt 6 } \right)\), \(\overrightarrow {BG} = \left( {\frac{{ - a}}{2};\frac{{5a}}{6};\frac{{a\sqrt 6 }}{6}} \right) = \frac{a}{6}\left( { - 3;5;\sqrt 6 } \right)\).
Góc giữa đường thẳng \(BG\) với đường thẳng \(SA\) bằng:
\(\cos \left( {BG;SA} \right) = \frac{{\left| {\overrightarrow {BG} .\overrightarrow {AS} } \right|}}{{BG.AS}}\)\( = \frac{{\left| { - 3 + 5 + 6} \right|}}{{\sqrt {40} .\sqrt 8 }} = \frac{{\sqrt 5 }}{5}\).
Câu 2
Lời giải
Chọn C

Gọi \[O\] là trung điểm của \[AB\]. Chuẩn hóa và chọn hệ trục tọa độ sao cho \[O\left( {0;0;0} \right)\],
\[A\left( {\frac{1}{2};0;0} \right)\], \[B\left( { - \frac{1}{2};0;0} \right)\], \[C\left( {0;\frac{{\sqrt 3 }}{2};0} \right)\], \[H\left( {0;\frac{{\sqrt 3 }}{6};0} \right)\], \[A'H = \frac{{a\sqrt 6 }}{3}\]\[ \Rightarrow A'\left( {0;\frac{{\sqrt 3 }}{6};\frac{{\sqrt 6 }}{3}} \right)\]
Ta có \[\overrightarrow {AB} = \overrightarrow {A'B'} \]\[ \Rightarrow B'\left( { - 1;\frac{{\sqrt 3 }}{6};\frac{{\sqrt 6 }}{3}} \right)\]. Dễ thấy \[\left( {ABC} \right)\] có vtpt \[\overrightarrow {{n_1}} = \left( {0;0;1} \right)\].
\[M\] là trung điểm \[AA'\]\[ \Rightarrow M\left( {\frac{1}{4};\frac{{\sqrt 3 }}{{12}};\frac{{\sqrt 6 }}{6}} \right)\], \[N\] là trung điểm \[BB'\]\[ \Rightarrow N\left( {\frac{{ - 3}}{4};\frac{{\sqrt 3 }}{{12}};\frac{{\sqrt 6 }}{6}} \right)\]
\[\overrightarrow {MN} = \left( { - 1;0;0} \right)\], \[\overrightarrow {CM} = \left( {\frac{1}{4};\frac{{ - 5\sqrt 3 }}{{12}};\frac{{\sqrt 6 }}{6}} \right)\]
\[ \Rightarrow \] \[\left( {CMN} \right)\] có vtpt \[\overrightarrow {{n_2}} = \left( {0;\frac{{\sqrt 6 }}{6};\frac{{5\sqrt 3 }}{{12}}} \right)\]\[ = \frac{{\sqrt 3 }}{{12}}\left( {0;2\sqrt 2 ;5} \right)\]
\[\cos \varphi = \]\[\frac{5}{{\sqrt {33} }}\]\[ \Rightarrow \tan \varphi = \sqrt {\frac{1}{{{{\cos }^2}\varphi }} - 1} \]\[ = \frac{{2\sqrt 2 }}{5}\]
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.