Cho hình lăng trụ đứng \(ABC.A'B'C'\) có \(AB = AC = a\), góc \(\widehat {BAC} = 120^\circ \), \(AA' = a\). Gọi \[M\], \[N\] lần lượt là trung điểm của \(B'C'\) và \(CC'\). Số đo góc giữa mặt phẳng\(\left( {AMN} \right)\) và mặt phẳng \(\left( {ABC} \right)\) bằng
Cho hình lăng trụ đứng \(ABC.A'B'C'\) có \(AB = AC = a\), góc \(\widehat {BAC} = 120^\circ \), \(AA' = a\). Gọi \[M\], \[N\] lần lượt là trung điểm của \(B'C'\) và \(CC'\). Số đo góc giữa mặt phẳng\(\left( {AMN} \right)\) và mặt phẳng \(\left( {ABC} \right)\) bằng
Quảng cáo
Trả lời:


Gọi \[H\] là trung điểm \[BC\], \[BC = a\sqrt 3 \], \[AH = \frac{a}{2}\].
Chọn hệ trục tọa độ \[H\left( {0;0;0} \right)\], \[A\left( {\frac{a}{2};0;0} \right)\], \[B\left( {0;\frac{{a\sqrt 3 }}{2};0} \right)\], \[C\left( {0; - \frac{{a\sqrt 3 }}{2};0} \right)\],
\[M\left( {0;0;a} \right)\], \[N\left( {0; - \frac{{a\sqrt 3 }}{2};\frac{a}{2}} \right)\]. Gọi \[\varphi \] là góc giữa mặt phẳng\(\left( {AMN} \right)\) và mặt phẳng \(\left( {ABC} \right)\).
\(\left( {AMN} \right)\) có một vtpt \[\vec n = \left[ {\overrightarrow {AM} ,\overrightarrow {AN} } \right]\]\[ = \left( {\frac{{\sqrt 3 }}{2};\frac{{ - 1}}{4};\frac{{\sqrt 3 }}{4}} \right)\]
\(\left( {ABC} \right)\) có một vtpt \[\overrightarrow {HM} \]\[ = \left( {0;0;1} \right)\], từ đó \[\cos \varphi = \frac{{\left| {\vec n.\overrightarrow {HM} } \right|}}{{\left| {\vec n} \right|HM}}\]\[ = \frac{{\frac{{\sqrt 3 }}{4}}}{{1.1}}\]\[ = \frac{{\sqrt 3 }}{4}\].
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn B
Trong \(\left( {SAB} \right)\), kẻ \(SH \bot AB\) tại \(H\). Ta có: \(\left\{ \begin{array}{l}\left( {SAB} \right) \bot \left( {ABCD} \right)\\\left( {SAB} \right) \cap \left( {ABCD} \right) = AB\\SH \subset \left( {SAB} \right),SH \bot AB\end{array} \right. \Rightarrow SH \bot \left( {ABCD} \right)\).
Kẻ tia \(Az\)//\(SH\) và chọn hệ trục tọa độ \(Axyz\) như hình vẽ sau đây.

\(AH = AB - BH = a - \frac{{3a}}{4} = \frac{a}{4}\) \( \Rightarrow H\left( {0;\frac{a}{4};0} \right) \Rightarrow S\left( {0;\frac{a}{4};\frac{{a\sqrt 3 }}{4}} \right)\).
\(M\left( {0;\frac{a}{2};0} \right)\), \(D\left( {a;0;0} \right)\), \(N\left( {\frac{a}{2};a;0} \right)\).
Ta có: \[\overrightarrow {SM} = \left( {0;\frac{a}{4}; - \frac{{a\sqrt 3 }}{4}} \right)\], \(\overrightarrow {DN} = \left( { - \frac{a}{2};a;0} \right)\) \( \Rightarrow \)\[\cos \left( {SM,DN} \right) = \frac{{\left| {\overrightarrow {SM} .\overrightarrow {DN} } \right|}}{{SN.DN}} = \frac{{\frac{{{a^2}}}{4}}}{{\frac{a}{2}.\frac{{a\sqrt 5 }}{2}}} = \frac{1}{{\sqrt 5 }}\].
Lời giải

Đặt hệ trục tọa độ \(Oxyz\) như hình vẽ. Khi đó, ta có \(A\left( {0;0;0} \right)\), \(B\left( {a;0;0} \right)\), \(D\left( {0;a\sqrt 3 ;0} \right)\), \(S\left( {0;0;a} \right)\).
Ta có \(\overrightarrow {BD} = \left( { - a;a\sqrt 3 ;0} \right) = a\left( { - 1;\sqrt 3 ;0} \right)\), nên đường thẳng \(BD\) có véc-tơ chỉ phương là \(\overrightarrow u = \left( { - 1;\sqrt 3 ;0} \right)\).
Ta có \(\overrightarrow {SB} = \left( {a;0; - a} \right)\), \(\overrightarrow {BC} = \left( {0;a\sqrt 3 ;0} \right)\) \( \Rightarrow \left[ {\overrightarrow {SB} ,\overrightarrow {BC} } \right] = \left( {{a^2}\sqrt 3 ;0;{a^2}\sqrt 3 } \right)\)\( = {a^2}\sqrt 3 \left( {1;0;1} \right)\).
Như vậy, mặt phẳng \(\left( {SBC} \right)\)có véc-tơ pháp tuyến là \(\overrightarrow n = \left( {1;0;1} \right)\).
Do đó, \(\alpha \) là góc tạo bởi giữa đường thẳng \(BD\) và mặt phẳng \(\left( {SBC} \right)\) thì
\(\sin \alpha = \frac{{\left| {\overrightarrow u .\overrightarrow n } \right|}}{{\left| {\overrightarrow u } \right|.\left| {\overrightarrow n } \right|}}\)\( = \frac{{\left| {\left( { - 1} \right).1 + \sqrt 3 .0 + 0.1} \right|}}{{\sqrt {{{\left( { - 1} \right)}^2} + {{\sqrt 3 }^2} + {0^2}} .\sqrt {{1^2} + {0^2} + {1^2}} }}\)\( = \frac{{\sqrt 2 }}{4}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.