Câu hỏi:

16/08/2025 11 Lưu

Cho đường thẳng \(\Delta :\frac{{x + 2024}}{2} = \frac{{y + 2025}}{3} = \frac{{z + 2026}}{6}\) và mặt phẳng \((P)\) : \(x - 2y - 2z + 1 = 0\). Gọi \(\alpha \) là góc giữa đường thẳng \(\Delta \) và mặt phẳng \((P)\).

c) \(\sin \alpha  = \frac{{|\vec u \cdot \vec n|}}{{|\vec u| \cdot |\vec n|}}\) với \(\vec u\) là một vectơ chỉ phương của đường thẳng \(d,\vec n\) là một vectơ pháp tuyến của mặt phẳng \((P)\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

c) Chọn đúng

Ta có: \(\vec u = (2;3;6)\) là một vectơ chì phương của đường thẳng \(\Delta \), \(\vec n = (1; - 2; - 2)\) là một vectơ pháp tuyến của mặt phẳng \((P)\).

\(\sin \alpha  = \frac{{|\vec u \cdot \vec n|}}{{|\vec u| \cdot |\vec n|}} = \frac{{|2 \cdot 1 + 3 \cdot ( - 2) + 6 \cdot ( - 2)|}}{{\sqrt {{2^2} + {3^2} + {6^2}}  \cdot \sqrt {{1^2} + {{( - 2)}^2} + {{( - 2)}^2}} }} = \frac{{16}}{{21}}.\) Suy ra α50°

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Chọn đúng

Đường thẳng \({d_1}\) đi qua điểm \({M_1} = \left( {3; - 1; - 1} \right)\) và có một véctơ chỉ phương là \(\overrightarrow {{u_1}}  = \left( {1; - 2;1} \right)\).

Đường thẳng \({d_2}\) đi qua điểm \({M_2} = \left( {0;0;1} \right)\) và có một véctơ chỉ phương là \(\overrightarrow {{u_2}}  = \left( {1; - 2;1} \right)\).

Do \[\overrightarrow {{u_1}}  = {\overrightarrow u _2}\] và \({M_1} \notin {d_1}\) nên hai đường thẳng \({d_1}\) và \({d_2}\) song song với nhau.

Ta có \(\overrightarrow {{M_1}{M_2}}  = \left( { - 3;1;2} \right)\), \(\left[ {{{\overrightarrow u }_1},\overrightarrow {{M_1}{M_2}} } \right] = \left( { - 5; - 5; - 5} \right)\)\( =  - 5\left( {1;1;1;} \right)\)

Gọi \(\left( \alpha  \right)\) là mặt phẳng chứa \({d_1}\) và \({d_2}\) khi đó \(\left( \alpha  \right)\) có một véctơ pháp tuyến là \(\overrightarrow n  = \left( {1;1;1} \right)\).

Phương trình mặt phẳng \(\left( \alpha  \right)\) là \(x + y + z - 1 = 0\).

Gọi \(A = {d_3} \cap \left( \alpha  \right)\) thì \(A\left( {1; - 1;1} \right)\).

Gọi \(B = {d_4} \cap \left( \alpha  \right)\) thì \(B\left( { - 1;2;0} \right)\).

Do \(\overrightarrow {AB}  = \left( { - 2;3; - 1} \right)\) không cùng phương với \(\overrightarrow {{u_1}}  = \left( {1; - 2;1} \right)\) nên đường thẳng \(AB\) cắt hai đường thẳng \({d_1}\) và \({d_2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP