Cho hai đường thẳng \(\Delta :\left\{ \begin{array}{l}x = 2 + t\\y = - 1 + t\\z = 3\end{array} \right.\) và \(\Delta ':\left\{ \begin{array}{l}x = 1 - s\\y = 2\\z = - 2 + s\end{array} \right.\).
c) Gọi \(\vec u\), \(\overrightarrow {u'} \) lần lượt là vectơ chỉ phương của hai đường thẳng \(\Delta \) và \(\Delta '\). Khi đó, công thức tính góc giữa hai đường thẳng \(\Delta \) và \(\Delta '\) là \(\cos \left( {\Delta ,\,\Delta '} \right) = \cos \left( {\vec u,\,\overrightarrow {u'} } \right) = \frac{{\vec u.\overrightarrow {u'} }}{{\left| {\vec u} \right|.\left| {\overrightarrow {u'} } \right|}}\);
Cho hai đường thẳng \(\Delta :\left\{ \begin{array}{l}x = 2 + t\\y = - 1 + t\\z = 3\end{array} \right.\) và \(\Delta ':\left\{ \begin{array}{l}x = 1 - s\\y = 2\\z = - 2 + s\end{array} \right.\).
c) Gọi \(\vec u\), \(\overrightarrow {u'} \) lần lượt là vectơ chỉ phương của hai đường thẳng \(\Delta \) và \(\Delta '\). Khi đó, công thức tính góc giữa hai đường thẳng \(\Delta \) và \(\Delta '\) là \(\cos \left( {\Delta ,\,\Delta '} \right) = \cos \left( {\vec u,\,\overrightarrow {u'} } \right) = \frac{{\vec u.\overrightarrow {u'} }}{{\left| {\vec u} \right|.\left| {\overrightarrow {u'} } \right|}}\);
Quảng cáo
Trả lời:
c) Gọi \(\vec u\), \(\overrightarrow {u'} \) lần lượt là vectơ chỉ phương của hai đường thẳng \(\Delta \) và \(\Delta '\). Khi đó, công thức tính góc giữa hai đường thẳng \(\Delta \) và \(\Delta '\) là \(\cos \left( {\Delta ,\,\Delta '} \right) = \left| {\cos \left( {\vec u,\,\overrightarrow {u'} } \right)} \right| = \frac{{\left| {\vec u.\overrightarrow {u'} } \right|}}{{\left| {\vec u} \right|.\left| {\overrightarrow {u'} } \right|}}\);
Chọn Sai
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Chọn đúng
Đường thẳng \({d_1}\) đi qua điểm \({M_1} = \left( {3; - 1; - 1} \right)\) và có một véctơ chỉ phương là \(\overrightarrow {{u_1}} = \left( {1; - 2;1} \right)\).
Đường thẳng \({d_2}\) đi qua điểm \({M_2} = \left( {0;0;1} \right)\) và có một véctơ chỉ phương là \(\overrightarrow {{u_2}} = \left( {1; - 2;1} \right)\).
Do \[\overrightarrow {{u_1}} = {\overrightarrow u _2}\] và \({M_1} \notin {d_1}\) nên hai đường thẳng \({d_1}\) và \({d_2}\) song song với nhau.
Ta có \(\overrightarrow {{M_1}{M_2}} = \left( { - 3;1;2} \right)\), \(\left[ {{{\overrightarrow u }_1},\overrightarrow {{M_1}{M_2}} } \right] = \left( { - 5; - 5; - 5} \right)\)\( = - 5\left( {1;1;1;} \right)\)
Gọi \(\left( \alpha \right)\) là mặt phẳng chứa \({d_1}\) và \({d_2}\) khi đó \(\left( \alpha \right)\) có một véctơ pháp tuyến là \(\overrightarrow n = \left( {1;1;1} \right)\).
Phương trình mặt phẳng \(\left( \alpha \right)\) là \(x + y + z - 1 = 0\).
Gọi \(A = {d_3} \cap \left( \alpha \right)\) thì \(A\left( {1; - 1;1} \right)\).
Gọi \(B = {d_4} \cap \left( \alpha \right)\) thì \(B\left( { - 1;2;0} \right)\).
Do \(\overrightarrow {AB} = \left( { - 2;3; - 1} \right)\) không cùng phương với \(\overrightarrow {{u_1}} = \left( {1; - 2;1} \right)\) nên đường thẳng \(AB\) cắt hai đường thẳng \({d_1}\) và \({d_2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.