Câu hỏi:

16/08/2025 4 Lưu

Trong không gian Oxyz, cho hai đường thẳng d: x-12=y-71=z-34 và d':x-63=y+1-2=z+21. Các mệnh đề sau đây đúng hay sai?

a) Đường thẳng d không song song đường thẳng d'. 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Chọn đúng

\[m > \frac{{15}}{2}\]có VTCP \[m < \frac{5}{2}\]và đi qua \[m = \frac{{15}}{2}\]

\[m = \frac{5}{2}\]có VTCP \[\frac{5}{2} < m < \frac{{15}}{2}\]và đi qua \[m \in \mathbb{R}\]

Từ đó ta có

MM'=(5; -8; -5) và [u,u'=(9; 10; 7) 0

Lại có \[{(2 + t - 1)^2} + {(1 + mt + 3)^2} + {( - 2t - 2)^2} = 1\]

Suy ra \[\begin{array}{l} \Leftrightarrow {(1 + t)^2} + {(4 + mt)^2} + {( - 2t - 2)^2} = 1\\ \Leftrightarrow \left( {{m^2} + 5} \right){t^2} + 2(5 + 4m)t + 20 = 0{\rm{     (1)}}\end{array}\] cắt d’.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Chọn đúng

Đường thẳng \({d_1}\) đi qua điểm \({M_1} = \left( {3; - 1; - 1} \right)\) và có một véctơ chỉ phương là \(\overrightarrow {{u_1}}  = \left( {1; - 2;1} \right)\).

Đường thẳng \({d_2}\) đi qua điểm \({M_2} = \left( {0;0;1} \right)\) và có một véctơ chỉ phương là \(\overrightarrow {{u_2}}  = \left( {1; - 2;1} \right)\).

Do \[\overrightarrow {{u_1}}  = {\overrightarrow u _2}\] và \({M_1} \notin {d_1}\) nên hai đường thẳng \({d_1}\) và \({d_2}\) song song với nhau.

Ta có \(\overrightarrow {{M_1}{M_2}}  = \left( { - 3;1;2} \right)\), \(\left[ {{{\overrightarrow u }_1},\overrightarrow {{M_1}{M_2}} } \right] = \left( { - 5; - 5; - 5} \right)\)\( =  - 5\left( {1;1;1;} \right)\)

Gọi \(\left( \alpha  \right)\) là mặt phẳng chứa \({d_1}\) và \({d_2}\) khi đó \(\left( \alpha  \right)\) có một véctơ pháp tuyến là \(\overrightarrow n  = \left( {1;1;1} \right)\).

Phương trình mặt phẳng \(\left( \alpha  \right)\) là \(x + y + z - 1 = 0\).

Gọi \(A = {d_3} \cap \left( \alpha  \right)\) thì \(A\left( {1; - 1;1} \right)\).

Gọi \(B = {d_4} \cap \left( \alpha  \right)\) thì \(B\left( { - 1;2;0} \right)\).

Do \(\overrightarrow {AB}  = \left( { - 2;3; - 1} \right)\) không cùng phương với \(\overrightarrow {{u_1}}  = \left( {1; - 2;1} \right)\) nên đường thẳng \(AB\) cắt hai đường thẳng \({d_1}\) và \({d_2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP