Câu hỏi:

16/08/2025 4 Lưu

Trong không gian với hệ tọa độ \(Oxyz\), cho hai điểm \(M\left( {1;\; - 2;\;1} \right)\), \(N\left( {0;\;1;\;3} \right)\). Các mệnh đề sau đây đúng hay sai?

a) Phương trình đường thẳng qua hai điểm \(M\), \(N\) là \[\frac{{x + 1}}{{ - 1}} = \frac{{y - 2}}{3} = \frac{{z + 1}}{2}\].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Chọn Sai

\(\overrightarrow {MN}  = \left( { - 1;\;3;\;2} \right) =  - 1\left( {1;\; - 3;\; - 2} \right)\).

Đường thẳng \(MN\) qua \(N\) nhận \(\overrightarrow {MN}  = \left( { - 1;\;3;\;2} \right)\) làm vectơ chỉ phương có PT:\[\frac{x}{{ - 1}} = \frac{{y - 1}}{3} = \frac{{z - 3}}{2}\]

Đường thẳng \(MN\) qua \(N\) nhận \(\overrightarrow {MN}  = \left( {1;\; - 3;\; - 2} \right)\) làm vectơ chỉ phương có PT:\[\frac{x}{{ - 1}} = \frac{{y - 1}}{3} = \frac{{z - 3}}{2}\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Chọn đúng

Đường thẳng \({d_1}\) đi qua điểm \({M_1} = \left( {3; - 1; - 1} \right)\) và có một véctơ chỉ phương là \(\overrightarrow {{u_1}}  = \left( {1; - 2;1} \right)\).

Đường thẳng \({d_2}\) đi qua điểm \({M_2} = \left( {0;0;1} \right)\) và có một véctơ chỉ phương là \(\overrightarrow {{u_2}}  = \left( {1; - 2;1} \right)\).

Do \[\overrightarrow {{u_1}}  = {\overrightarrow u _2}\] và \({M_1} \notin {d_1}\) nên hai đường thẳng \({d_1}\) và \({d_2}\) song song với nhau.

Ta có \(\overrightarrow {{M_1}{M_2}}  = \left( { - 3;1;2} \right)\), \(\left[ {{{\overrightarrow u }_1},\overrightarrow {{M_1}{M_2}} } \right] = \left( { - 5; - 5; - 5} \right)\)\( =  - 5\left( {1;1;1;} \right)\)

Gọi \(\left( \alpha  \right)\) là mặt phẳng chứa \({d_1}\) và \({d_2}\) khi đó \(\left( \alpha  \right)\) có một véctơ pháp tuyến là \(\overrightarrow n  = \left( {1;1;1} \right)\).

Phương trình mặt phẳng \(\left( \alpha  \right)\) là \(x + y + z - 1 = 0\).

Gọi \(A = {d_3} \cap \left( \alpha  \right)\) thì \(A\left( {1; - 1;1} \right)\).

Gọi \(B = {d_4} \cap \left( \alpha  \right)\) thì \(B\left( { - 1;2;0} \right)\).

Do \(\overrightarrow {AB}  = \left( { - 2;3; - 1} \right)\) không cùng phương với \(\overrightarrow {{u_1}}  = \left( {1; - 2;1} \right)\) nên đường thẳng \(AB\) cắt hai đường thẳng \({d_1}\) và \({d_2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP