Câu hỏi:

17/08/2025 7 Lưu

Trong không gian \(Oxyz\), cho điểm \(M( - 1;3;2)\) và mặt phẳng \((P):x - 2y + 4z + 1 = 0\). Các mệnh đề sau đây đúng hay sai?

a) Đường thẳng đi qua \(M\) và vuông góc với \((P)\) có phương trình là \(\frac{{x + 1}}{1} = \frac{{y - 3}}{{ - 2}} = \frac{{z - 2}}{1}\).  

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Chọn Sai

\((P):x - 2y + 4z + 1 = 0\) có vectơ pháp tuyến \(\vec n = (1; - 2;4) =  - ( - 1;2; - 4)\)

Đường thẳng đi qua \(M\) và vuông góc với \((P)\) nhận \(\vec n = (1; - 2;4) =  - ( - 1;2; - 4)\) làm vectơ chỉ phương nên có phương trình \(\frac{{x + 1}}{1} = \frac{{y - 3}}{{ - 2}} = \frac{{z - 2}}{4}\) hoặc \(\left\{ \begin{array}{l}x =  - 1 - t\\y = 3 + 2t\\z = 2 - 4t\end{array} \right.\)

\(\frac{{x + 1}}{1} = \frac{{y - 3}}{{ - 2}} = \frac{{z - 2}}{4} \Leftrightarrow \frac{{1 - x}}{{ - 1}} = \frac{{ - y - 3}}{2} = \frac{{ - z - 2}}{{ - 4}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Chọn đúng

Đường thẳng \({d_1}\) đi qua điểm \({M_1} = \left( {3; - 1; - 1} \right)\) và có một véctơ chỉ phương là \(\overrightarrow {{u_1}}  = \left( {1; - 2;1} \right)\).

Đường thẳng \({d_2}\) đi qua điểm \({M_2} = \left( {0;0;1} \right)\) và có một véctơ chỉ phương là \(\overrightarrow {{u_2}}  = \left( {1; - 2;1} \right)\).

Do \[\overrightarrow {{u_1}}  = {\overrightarrow u _2}\] và \({M_1} \notin {d_1}\) nên hai đường thẳng \({d_1}\) và \({d_2}\) song song với nhau.

Ta có \(\overrightarrow {{M_1}{M_2}}  = \left( { - 3;1;2} \right)\), \(\left[ {{{\overrightarrow u }_1},\overrightarrow {{M_1}{M_2}} } \right] = \left( { - 5; - 5; - 5} \right)\)\( =  - 5\left( {1;1;1;} \right)\)

Gọi \(\left( \alpha  \right)\) là mặt phẳng chứa \({d_1}\) và \({d_2}\) khi đó \(\left( \alpha  \right)\) có một véctơ pháp tuyến là \(\overrightarrow n  = \left( {1;1;1} \right)\).

Phương trình mặt phẳng \(\left( \alpha  \right)\) là \(x + y + z - 1 = 0\).

Gọi \(A = {d_3} \cap \left( \alpha  \right)\) thì \(A\left( {1; - 1;1} \right)\).

Gọi \(B = {d_4} \cap \left( \alpha  \right)\) thì \(B\left( { - 1;2;0} \right)\).

Do \(\overrightarrow {AB}  = \left( { - 2;3; - 1} \right)\) không cùng phương với \(\overrightarrow {{u_1}}  = \left( {1; - 2;1} \right)\) nên đường thẳng \(AB\) cắt hai đường thẳng \({d_1}\) và \({d_2}\).

Lời giải

a) Chọn đúng

-1+t-1-2=-t+21=-2+3t-43

-2+t-2=-t+21=-6+3t3

t=2

Từ đó suy ra giao điểm I của d và d' là I(1; -2; 4)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP