Câu hỏi:

20/08/2025 26 Lưu

Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 8x + 10y - 6z + 49 = 0\). Tính bán kính \(R\) của mặt cầu \(\left( S \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Phương trình mặt cầu: \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\) \(\left( {{a^2} + {b^2} + {c^2} - d > 0} \right)\) có tâm \(I\left( {a\,;\,b\,;\,c} \right)\), bán kính \(R = \sqrt {{a^2} + {b^2} + {c^2} - d} \).

Ta có \(a = 4\), \(b =  - 5\), \(c = 3\), \(d = 49\). Do đó \(R = \sqrt {{a^2} + {b^2} + {c^2} - d}  = 1\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Chọn A

Đáp án B vì không có số hạng \[{y^2}\]. Đáp án C loại vì có số hạng \[2xy\]. Đáp án D loại vì \[{a^2} + {b^2} + {c^2} - d = 1 + 1 + 4 - 8 =  - 2 < 0\].

Đáp án A thỏa mãn vì \[{a^2} + {b^2} + {c^2} - d = 1 + 0 + 4 + 1 = 6 > 0\].

Câu 2

Lời giải

Chọn C

Gọi I là trung điểm của AB \( \Rightarrow I(0;3; - 1).\)

\(\overrightarrow {IA}  = (2;1;2) \Rightarrow IA = \sqrt {{2^2} + {1^2} + {2^2}}  = 3.\)

Mặt cầu đã cho có tâm I, đường kính AB nên có phương trình là \({x^2} + {\left( {y - 3} \right)^2} + {\left( {z + 1} \right)^2} = 9.\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP