Câu hỏi:

20/08/2025 29 Lưu

Trong không gian \[Oxyz\] cho hai điểm \[I\left( {1;1;1} \right)\] và \[A\left( {1;2;3} \right)\]. Phương trình mặt cầu có tâm I và đi qua A là

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Ta có \(R = IA = \sqrt {{{\left( {1 - 1} \right)}^2} + {{\left( {2 - 1} \right)}^2} + {{\left( {3 - 1} \right)}^2}}  = \sqrt 5 \)

vậy phương trình mặt cầu tâm \(I\) và đi qua điểm \(A\) có phương trình là

\({\left( {x - {x_I}} \right)^2} + {\left( {y - {y_I}} \right)^2} + {\left( {z - {z_I}} \right)^2} = {R^2} \Rightarrow {\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = 5\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Chọn A

Đáp án B vì không có số hạng \[{y^2}\]. Đáp án C loại vì có số hạng \[2xy\]. Đáp án D loại vì \[{a^2} + {b^2} + {c^2} - d = 1 + 1 + 4 - 8 =  - 2 < 0\].

Đáp án A thỏa mãn vì \[{a^2} + {b^2} + {c^2} - d = 1 + 0 + 4 + 1 = 6 > 0\].

Câu 2

Lời giải

Chọn C

Gọi I là trung điểm của AB \( \Rightarrow I(0;3; - 1).\)

\(\overrightarrow {IA}  = (2;1;2) \Rightarrow IA = \sqrt {{2^2} + {1^2} + {2^2}}  = 3.\)

Mặt cầu đã cho có tâm I, đường kính AB nên có phương trình là \({x^2} + {\left( {y - 3} \right)^2} + {\left( {z + 1} \right)^2} = 9.\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP