Trong không gian \(Oxyz\), có tất cả bao nhiêu giá nguyên của \(m\) để
\({x^2} + {y^2} + {z^2} + 2\left( {m + 2} \right)x - 2\left( {m - 1} \right)z + 3{m^2} - 5 = 0\) là phương trình một mặt cầu?
Quảng cáo
Trả lời:

Chọn D
Phương trình đã cho là phương trình mặt cầu khi và chỉ khi
\(\begin{array}{l}{\left( {m + 2} \right)^2} + {\left( {m - 1} \right)^2} - 3{m^2} + 5 > 0\\ \Leftrightarrow {m^2} - 2m - 10 < 0\\ \Leftrightarrow - 1 - \sqrt {11} < m < 1 + \sqrt {11} \end{array}\)
Theo bài ra \(m \in \mathbb{Z} \Rightarrow m = \left\{ {\left. { - 2;\, - 1;\,0;\,1;\,2;\,3;\,4} \right\}} \right. \Rightarrow \) có \(7\) giá trị của \(m\) nguyên thỏa mãn bài toán.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn D
Tâm \(I\) của mặt cầu là trung điểm đoạn \(MN\)\( \Rightarrow \)\(I\left( {1;2;1} \right)\).
Bán kính mặt cầu \(R = \frac{{MN}}{2} = \frac{{\sqrt {{{\left( { - 1 - 3} \right)}^2} + {{\left( {6 + 2} \right)}^2} + {{\left( { - 3 - 5} \right)}^2}} }}{2} = 6\).
Vậy phương trình mặt cầu là \[{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 1} \right)^2} = 36\].
Lời giải
Chọn A
Phương trình mặt cầu \[\left( S \right)\] có tâm \[I\left( {1;\,\,2;\,\, - 1} \right)\] và bán kính \[R = 2\] là \[{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 1} \right)^2} = 4\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.