Trong hệ trục tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x - \cos \alpha } \right)^2} + {\left( {y - \cos \beta } \right)^2} + {\left( {z - \cos \gamma } \right)^2} = 4\) với \(\alpha ,\beta \) và \(\gamma \) lần lượt là ba góc tạo bởi tia \(Ot\) bất kì với \(3\) tia \(Ox,Oy\) và \(Oz\). Biết rằng mặt cầu \(\left( S \right)\) luôn tiếp xúc với hai mặt cầu cố định. Tổng diện tích của hai mặt cầu cố định đó bằng
Quảng cáo
Trả lời:

Chọn A

Ta dễ dàng chứng minh được: \({\cos ^2}\alpha + {\cos ^2}\beta + {\cos ^2}\gamma = 1\)
Mặt cầu \(\left( S \right)\) có tâm \(I\left( {\cos \alpha ;\cos \beta ;\cos \gamma } \right)\).
Suy ra tâm \(I\) thuộc mặt cầu \(\left( {S'} \right)\)có tâm \(O\left( {0;0;0} \right),R = \sqrt {{{\cos }^2}\alpha + {{\cos }^2}\beta + {{\cos }^2}\gamma } = 1\)
Mặt cầu \(\left( S \right)\) luôn tiếp xúc với hai mặt cầu \(\left( {{S_1}} \right),\left( {{S_2}} \right)\).
Mặt cầu \(\left( {{S_1}} \right)\) có tâm là \(O\), bán kính \({R_1} = \left| {OI - R} \right| = \left| {1 - 2} \right| = 1\).
Mặt cầu \(\left( {{S_2}} \right)\) có tâm là \(O\), bán kính \({R_2} = OI + R = 1 + 2 = 3\).
Vậy tổng diện tích hai mặt cầu bằng \(4\pi \left( {R_1^2 + R_2^2} \right) = 4\pi \left( {{1^2} + {3^2}} \right) = 40\pi \).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn D
Tâm \(I\) của mặt cầu là trung điểm đoạn \(MN\)\( \Rightarrow \)\(I\left( {1;2;1} \right)\).
Bán kính mặt cầu \(R = \frac{{MN}}{2} = \frac{{\sqrt {{{\left( { - 1 - 3} \right)}^2} + {{\left( {6 + 2} \right)}^2} + {{\left( { - 3 - 5} \right)}^2}} }}{2} = 6\).
Vậy phương trình mặt cầu là \[{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 1} \right)^2} = 36\].
Lời giải
Chọn A
Phương trình mặt cầu \[\left( S \right)\] có tâm \[I\left( {1;\,\,2;\,\, - 1} \right)\] và bán kính \[R = 2\] là \[{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 1} \right)^2} = 4\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.