Dây chuyền lắp ráp ô tô điện gồm các linh kiện là sản phẩm do hai nhà máy sản xuất ra. Số linh kiện nhà máy I sản xuất ra chiếm \(55\% \) tổng số linh kiện, số linh kiện nhà máy II sản xuất ra chiếm \(45\% \) tổng số linh kiện; tỉ lệ linh kiện đạt tiêu chuẩn của nhà máy I là \(90\% \), của nhà máy II là \(87\% \). Lấy ngẫu nhiên ra một linh kiện từ dây chuyền lắp ráp đó để kiểm tra.
Xác suất để linh kiện được lấy ra đạt tiêu chuẩn là bao nhiêu?
Dây chuyền lắp ráp ô tô điện gồm các linh kiện là sản phẩm do hai nhà máy sản xuất ra. Số linh kiện nhà máy I sản xuất ra chiếm \(55\% \) tổng số linh kiện, số linh kiện nhà máy II sản xuất ra chiếm \(45\% \) tổng số linh kiện; tỉ lệ linh kiện đạt tiêu chuẩn của nhà máy I là \(90\% \), của nhà máy II là \(87\% \). Lấy ngẫu nhiên ra một linh kiện từ dây chuyền lắp ráp đó để kiểm tra.
Xác suất để linh kiện được lấy ra đạt tiêu chuẩn là bao nhiêu?
Quảng cáo
Trả lời:

Sau bài học này, ta giải quyết được bài toán trên như sau:
Xét hai biến cố sau:
A: “Linh kiện được chọn ra đạt tiêu chuẩn";
B: "Linh kiện được chọn ra do nhà máy I sản xuất".
Khi đó, ta có:
\({\rm{P}}({\rm{B}}) = 0,55;{\rm{P}}(\bar B) = 1 - {\rm{P}}({\rm{B}}) = 1 - 0,55 = 0,45;\)
\({\rm{P}}({\rm{A}}\mid {\rm{B}}) = 0,9;{\rm{P}}({\rm{A}}\mid \bar B) = 0,87.\)
Áp dụng công thức xác suất toàn phần, ta có:
\({\rm{P}}({\rm{A}}) = {\rm{P}}({\rm{B}}) \cdot {\rm{P}}({\rm{A}}\mid {\rm{B}}) + {\rm{P}}(\bar B) \cdot {\rm{P}}({\rm{A}}\mid \bar B) = 0,55 \cdot 0,9 + 0,45 \cdot 0,87 = 0,8865.{\rm{ }}\)
Vậy xác suất để linh kiện được lấy ra đạt tiêu chuẩn bằng 0,8865 .
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(A\) là biến cố: "Thứ Ba, ông An đi làm bằng xe máy"; \(B\) là biến cố: "Thứ Tư, ông An đi làm bằng xe máy". Ta cần tính \(P(B)\). Theo công thức xác suất toàn phần, ta có:
\(P(B) = P(A) \cdot P(B\mid A) + P(\bar A) \cdot P(B\mid \bar A).\)
- Tính \(P(A)\) : Vi thứ Hai, ông An đi làm bằng xe buýt nên xác suất để thứ Ba (hôm sau), ông đi làm bằng xe máy là 0,4 . Vậy \(P(A) = 0,4\).
- Tính \(P(\bar A)\) : Ta có \(P(\bar A) = 1 - 0,4 = 0,6\).
- Tính \(P(B\mid A)\) : Đây là xác suất để thứ Tư, ông An đi làm bằng xe máy nếu thứ Ba, ông An đi làm bằng xe máy.
- Theo giả thiết, nếu hôm nay ông đi làm bằng xe máy thì xác suất để hôm sau ông đi làm bằng xe buýt là 0,7 và đi làm bằng xe máy là \(1 - 0,7 = 0,3\). Do đó, nếu thứ Ba , ông An đi làm bằng xe máy thì xác suất để thứ Tư, ông đi làm bằng xe máy là 0,3 . Vậy \(P(B\mid A) = 0,3\).
- Tính \(P(B\mid \bar A)\) : Đây là xác suất để thứ Tư, ông An đi làm bằng xe máy nếu thứ Ba ông An đi làm bằng xe buýt. Theo giả thiết, né́u hôm nay ông đi làm bằng xe buýt thì xác suất để hôm sau ông đi làm bằng xe máy là 0,4 . Do đó nếu thứ Ba, ông An đi làm bằng xe buýt thì
\(P(B) = P(A) \cdot P(B\mid A) + P(\bar A) \cdot P(B\mid \bar A) = 0,4 \cdot 0,3 + 0,6 \cdot 0,4 = 0,36.\)
Lời giải
a) Số viên bi màu đỏ có dán nhãn là: \(75\% .40 = 30\) (viên bi).
Số viên bi màu xanh có dán nhãn là: \(50\% .60 = 30\) (viên bi).

b) Xét hai biến cố sau:
A: "Viên bi được chọn ra có dán nhãn";
\(B\) : "Viên bi được chọn ra có màu đỏ".
Khi đó, ta có:
\({\rm{P}}(B) = \frac{{40}}{{100}} = \frac{2}{5};{\rm{ P}}(\bar B) = 1 - {\rm{P}}(B) = 1 - \frac{2}{5} = \frac{3}{5};{\rm{P}}(A\mid B) = \frac{{30}}{{40}} = \frac{3}{4};{\rm{ P}}(A\mid \bar B) = \frac{{30}}{{60}} = \frac{1}{2}.\)
Áp dụng công thức xác suất toàn phần, ta có:
\({\rm{P}}(A) = {\rm{P}}(B) \cdot {\rm{P}}(A\mid B) + {\rm{P}}(\bar B) \cdot {\rm{P}}(A\mid \bar B) = \frac{2}{5} \cdot \frac{3}{4} + \frac{3}{5} \cdot \frac{1}{2} = \frac{3}{5}.\)
Vậy xác suất để viên bi được lấy ra có dán nhãn bằng \(\frac{3}{5}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.