Câu hỏi:

23/08/2025 25 Lưu

Một loại xét nghiệm nhanh SARS-CoV-2 cho kết quá dương tính với \(76,2\% \) các ca thực sự nhiểm virus và kết quả âm tích với \(99,1\% \) các ca thực sự không nhiểm virus (nguồn: https://tapchiyhocvietnam.vn/index.php/vmj/article/view/2124/1921). Giả sử tỉ lệ người nhiểm virus SARS-CoV-2 trong một cộng đồng là \(1\% \). Một người trong cộng đồng đó làm xét nghiệm và nhận kết quả dương tính. Hói khả năng người đó thực sự nhiễm virus là cao hay thấp?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Sau khi học xong bài này, ta giải quyết bài toán này như sau:

Gọi A là biến cố "Người làm xét nghiệm có kết quả dương tính" và B là biến cố "Người làm xét nghiệm thực sự nhiêm vi rút".

Ta có \({\rm{P}}({\rm{A}}\mid {\rm{B}}) = 0,762;P(\bar A\mid \bar B) = 0,991;{\rm{P}}({\rm{B}}) = 0,01\).

Suy ra \(P(A\mid \bar B) = 1 - P(\bar A\mid \bar B) = 0,009,P(\bar B) = 1 - P(B) = 0,99\)

Theo công thức xác suất toàn phần ta có:

\(P(A) = P(B) \cdot P(A\mid B) + P(\bar B) \cdot P(A\mid \bar B) = 0,01 \cdot 0,762 + 0,99 \cdot 0,009 = 0,01653.\)

Xác suất một người thực sự nhiễm virus khi người đó có kết quá xét nghiệm dương tính là \({\rm{P}}({\rm{B}}\mid {\rm{A}})\).

Ta có \(P(B\mid A) = \frac{{P(B) \cdot P(A\mid B)}}{{P(A)}} = \frac{{0,01.0,762}}{{0,01653}} \approx 0,461\)

Vậy khả năng thực sự người đó nhiễm virus là \(46,1\% \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(A\) là biến cố: "Bà \(N\) bị bệnh hiểm nghèo \(Y\) "; \(B\) là biến cố: "Xét nghiệm cho kết quả dương tính".

a) Trước khi tiến hành xét nghiệm, xác suất không mắc bệnh hiểm nghèo Y của bà N là

\(P(\bar A) = 1 - P(A) = 1 - 0,005 = 0,995.{\rm{ }}\)

b) Ta cần tính \(P(\bar A\mid \bar B)\).

Theo công thức Bayes ta có: \(P(\bar A\mid \bar B) = \frac{{P(\bar A) \cdot P(\bar B\mid \bar A)}}{{P(\bar A) \cdot P(\bar B\mid \bar A) + P(A) \cdot P(\bar B\mid A)}}.\)

\(P(\bar B\mid \bar A)\) là xác suất để bà \(N\) có xét nghiệm là âm tính nếu bà \(N\) không bị bệnh \(Y\).

Theo bài ra ta có: \(P(\bar B\mid \bar A) = 0,97{\rm{;}}\)

\(P(\bar B\mid A)\) là xác suất để bà N có xét nghiệm âm tính nếu bà N bị bệnh Y

\(P(\bar B\mid A) = 1 - 0,94 = 0,06.{\rm{ }}\)

Thay vào công thức Bayes ta có: \(P(\bar A\mid \bar B) = \frac{{0,995 \cdot 0,97}}{{0,995 \cdot 0,97 + 0,005 \cdot 0,06}} \approx 0,9997.\)

Như vậy, với xét nghiệm cho kết quả âm tính, xác suất không mắc bệnh Y của bà N tăng lên thành \(99,97\% \) (trước xét nghiệm là \(99,5\% \) ).

Lời giải

Xét hai biến cố:

A: "Con bò được chọn ra không bị mắc bệnh bò điên".

B: "Con bò được chọn ra có phản ứng dương tính".

Vỉ tỉ lệ bò bị mắc bệnh bò điên ở Hà Lan là 13 con trên 1000000 con nên tỉ lệ bò mắc bệnh bò điên ở Hà Lan là \({\rm{P}}(\bar A) = 0,000013\).

Suy ra \(P(A) = 1 - 0,000013 = 0,999987\).

Trong số những con bò không bị mắc bệnh thì xác suất để có phản ứng dương tính trong xét nghiệm A là \(10\% \), suy ra \({\rm{P}}({\rm{B}}\mid {\rm{A}}) = 0,1\).

Khi con bò mắc bệnh bò điên thì xác suất để có phản ứng dương tính trong xét nghiệm A là \(70\% \) nên \({\rm{P}}({\rm{B}}\mid \bar A) = 0,7\).

Ta thấy xác suất mắc bệnh bò điên của một con bò ở Hà Lan xét nghiệm có phản ứng dương tính với xét nghiệm A chính là \({\rm{P}}(\bar A\mid {\rm{B}})\). Áp dụng công thức Bayes, ta có:

\(P(\bar A\mid B) = \frac{{P(\bar A) \cdot P(B\mid \bar A)}}{{P(\bar A) \cdot P(B\mid \bar A) + P(A) \cdot P(B\mid A)}}\)

\( = \frac{{0,000013 \cdot 0,7}}{{0,000013 \cdot 0,7 + 0,999987 \cdot 0,1}} \approx 0,000091.\)

Vậy khi một con bò ở Hà Lan có phản ứng dương tính với xét nghiệm A thì xác suất để nó bị mắc bệnh bò điên là 0,000091 .