Cho hai biến cố \(A\), \(B\) với \({\rm{P}}(B) = 0,6;{\rm{P}}(A\mid B) = 0,7\) và \({\rm{P}}(A\mid \bar B) = 0,4\). Tính \({\rm{P}}(A)\).
Cho hai biến cố \(A\), \(B\) với \({\rm{P}}(B) = 0,6;{\rm{P}}(A\mid B) = 0,7\) và \({\rm{P}}(A\mid \bar B) = 0,4\). Tính \({\rm{P}}(A)\).
Quảng cáo
Trả lời:

Ta có \(P(B) = 0,6\). Suy ra \(P(\bar B) = 1 - P(B) = 1 - 0,6 = 0,4\).
Áp dụng công thức xác suất toàn phần, ta có:
\({\rm{P}}({\rm{A}}) = {\rm{P}}({\rm{B}}) \cdot {\rm{P}}({\rm{A}}\mid {\rm{B}}) + {\rm{P}}(\bar B) \cdot {\rm{P}}({\rm{A}}\mid \bar B) = 0,6 \cdot 0,7 + 0,4 \cdot 0,4 = 0,58.{\rm{ }}\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xét các biến cố:
M: "Con bò ở Hà Lan bị bệnh bò điên";
D: "Con bò ở Hà Lan có phản ứng dương tính với xét nghiệm A ".
Theo giả thiết, ta có: \({\rm{P}}(M) = 0,000013;{\rm{P}}(D\mid M) = 0,7;{\rm{P}}(D\mid \bar M) = 0,1\).
Theo công thức xác suất toàn phần, ta có:
\({\rm{P}}(D) = {\rm{P}}(M) \cdot {\rm{P}}(D\mid M) + {\rm{P}}(\bar M) \cdot {\rm{P}}(D\mid \bar M) = 0,000013 \cdot 0,7 + (1 - 0,000013) \cdot 0,1\)\( = 0,1000078.\)
Theo công thức Bayes, ta có: \(P(M\mid D) = \frac{{{\rm{P}}(M) \cdot {\rm{P}}(D\mid M)}}{{{\rm{P}}(D)}} = \frac{{0,000013 \cdot 0,7}}{{0,1000078}} = \frac{{91}}{{1000078}}.\)
Vậy xác suất để một con bò Hà Lan bị bệnh bò điên nếu nó phản ứng dương tính với xét nghiệm A là \(\frac{{91}}{{1000078}}\).
Lời giải
a) Theo bài ra ta có: \(P(A) = 0,8;P(B) = 0,9;P(A \cap B) = 0,8\).
Vi \(P(A) \cdot P(B) = 0,8 \cdot 0,9 = 0,72 \ne 0,8 = P(A \cap B)\) nên hai biến cố \(A\) và \(B\) không độc lập.
b) Ta có xác suất xạ thủ đó bắn trúng bia số 2 , biết xạ thủ bắn trúng bia số 1 chính là xác suất có điều kiện \({\rm{P}}({\rm{B}}\mid {\rm{A}})\).
Khi đó, \({\rm{P}}({\rm{B}}\mid {\rm{A}}) = \frac{{P(A \cap B)}}{{P(A)}} = \frac{{0,8}}{{0,8}} = 1\).
Vậy nếu biết xạ thủ đó bắn trúng bia số 1 thì xác suất xạ thủ đó bắn trúng bia số 2 là 1 .
c) Ta có xác suất xạ thủ đó bắn trúng bia số 2 , biết xạ thủ không bắn trúng bia số 1 chính là xác suất có điều kiện \({\rm{P}}({\rm{B}}\mid \bar A)\).
Áp dụng công thức xác suất toàn phần, ta có:
\({\rm{P}}({\rm{B}}) = {\rm{P}}({\rm{A}}) \cdot {\rm{P}}({\rm{B}}\mid {\rm{A}}) + {\rm{P}}(\bar A) \cdot {\rm{P}}({\rm{B}}\mid \bar A).\)
Suy ra \({\rm{P}}({\rm{B}}\mid \bar A) = \frac{{P(B) - P(A) \cdot P(B\mid A)}}{{P(\bar A)}} = \frac{{0,9 - 0,8 \cdot 1}}{{1 - 0,8}} = 0,5\).
Vậy nếu biết xạ thủ đó không bắn trúng bia số 1 thì xác suất xạ thủ đó bắn trúng bia số 2 là 0,5 .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.