Câu hỏi:

23/08/2025 35 Lưu

Có hai chiếc hộp, hộp I chứa 5 viên bi màu trắng và 5 viên bi màu đen, hộp II chứa 6 viên bi màu trắng và 4 viên bi màu đen, các viên bi có cùng kích thước và khối lượng. Lấy ngẫu nhiên một viên bi từ hộp I bỏ sang hộp II . Sau đó lấy ra ngẫu nhiên một viên bi từ hộp II.

a) Tính xác suất để viên bi được lấy ra từ hộp II là viên bi màu trắng.

b) Giả sử viên bi được lấy ra từ hộp II là viên bi màu trắng. Tính xác suất để viên bi màu trắng đó thuộc hộp I .

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Xét các biến cố:

A: "Lấy được viên bi màu trắng từ hộp II ";

\(B\) : "Lấy được viên bi màu trắng từ hộp I bỏ sang hộp II";

\(\bar B\) : "Lấy được viên bi màu đen từ hộp I bỏ sang hộp II".

Theo giả thiết ta có: \({\rm{P}}(B) = {\rm{P}}(\bar B) = \frac{5}{{10}} = \frac{1}{2};{\rm{P}}(A\mid B) = \frac{7}{{11}};{\rm{P}}(A\mid \bar B) = \frac{6}{{11}}.\)

Theo công thức xác suất toàn phần, ta có:

\({\rm{P}}(A) = {\rm{P}}(B) \cdot {\rm{P}}(A\mid B) + {\rm{P}}(\bar B) \cdot {\rm{P}}(A\mid \bar B) = \frac{1}{2} \cdot \frac{7}{{11}} + \frac{1}{2} \cdot \frac{6}{{11}} = \frac{{13}}{{22}}.\)

Vậy xác suất để viên bi được lấy ra từ hộp II là viên bi màu trắng là \(\frac{{13}}{{22}}\).

b) Gọi \(N\) là biến cố "Viên bi được lấy ra từ hộp II là viên bi thuộc hộp I ". Khi đó ta cần tính \({\rm{P}}(N\mid A)\).

Ta có: \({\rm{P}}(N) = \frac{1}{{11}};{\rm{P}}(A) = \frac{{13}}{{22}}\). Để tính \({\rm{P}}(A\mid N)\), hay xác suất để lấy được viên bi màu trắng từ hộp II , biết rằng viên bi đó thuộc hộp I , ta xét các trường hợp sau:

- Viên bi được lấy từ hộp I bỏ sang hộp II có màu đen. Khi đó xác suất lấy được viên bi trắng thuộc hộp I bằng 0 .

- Viên bi được lấy từ hộp I bỏ sang hộp II có màu trắng. Khi đó xác suất lấy được viên bi màu trắng thuộc hộp I bằng \({\rm{P}}(B) = \frac{1}{2}\).

Do đó, \({\rm{P}}(A\mid N) = 0 + \frac{1}{2} = \frac{1}{2}\). Theo công thức Bayes, ta có:

\({\rm{P}}(N\mid A) = \frac{{{\rm{P}}(A\mid N) \cdot {\rm{P}}(N)}}{{{\rm{P}}(A)}} = \frac{{\frac{1}{2} \cdot \frac{1}{{11}}}}{{\frac{{13}}{{22}}}} = \frac{1}{{13}}.\)

Vậy xác suất viên bi được lấy ra từ hộp II là viên bi thuộc hộp I , biết rằng viên bi đó màu trắng, là \(\frac{1}{{13}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(A\) là biến cố: "Bà \(N\) bị bệnh hiểm nghèo \(Y\) "; \(B\) là biến cố: "Xét nghiệm cho kết quả dương tính".

a) Trước khi tiến hành xét nghiệm, xác suất không mắc bệnh hiểm nghèo Y của bà N là

\(P(\bar A) = 1 - P(A) = 1 - 0,005 = 0,995.{\rm{ }}\)

b) Ta cần tính \(P(\bar A\mid \bar B)\).

Theo công thức Bayes ta có: \(P(\bar A\mid \bar B) = \frac{{P(\bar A) \cdot P(\bar B\mid \bar A)}}{{P(\bar A) \cdot P(\bar B\mid \bar A) + P(A) \cdot P(\bar B\mid A)}}.\)

\(P(\bar B\mid \bar A)\) là xác suất để bà \(N\) có xét nghiệm là âm tính nếu bà \(N\) không bị bệnh \(Y\).

Theo bài ra ta có: \(P(\bar B\mid \bar A) = 0,97{\rm{;}}\)

\(P(\bar B\mid A)\) là xác suất để bà N có xét nghiệm âm tính nếu bà N bị bệnh Y

\(P(\bar B\mid A) = 1 - 0,94 = 0,06.{\rm{ }}\)

Thay vào công thức Bayes ta có: \(P(\bar A\mid \bar B) = \frac{{0,995 \cdot 0,97}}{{0,995 \cdot 0,97 + 0,005 \cdot 0,06}} \approx 0,9997.\)

Như vậy, với xét nghiệm cho kết quả âm tính, xác suất không mắc bệnh Y của bà N tăng lên thành \(99,97\% \) (trước xét nghiệm là \(99,5\% \) ).

Lời giải

a) Xét hai biến cố:

A: "Linh kiện được lấy ra từ lô hàng là linh kiện tốt”;

B: "Linh kiện được lấy ra từ lô hàng do nhà máy I sản xuất".

Vi lô linh kiện để lẫn lộn 80 sản phẩm của nhà máy số I và 120 sản phẩm của nhà máy số II nên \(P(B) = \frac{{80}}{{80 + 120}} = 0,4\), suy ra \(P(\bar B) = 1 - 0,4 = 0,6\).

Vì tỉ lệ phế phẩm của các nhà máy I, II lần lượt là: \(4\% ;3\% \) nên tỉ lệ thành phẩm (linh kiện tốt) của các nhà máy I, II lần lượt là \(96\% ;97\% \).

Do đó \({\rm{P}}({\rm{A}}\mid {\rm{B}}) = 0,96\) và \({\rm{P}}({\rm{A}}\mid \bar B) = 0,97\).

Áp dụng công thức xác suất toàn phần, ta có xác suất để linh kiện được lấy ra là linh kiện tốt là:

\({\rm{P}}({\rm{A}}) = {\rm{P}}({\rm{B}}) \cdot {\rm{P}}({\rm{A}}\mid {\rm{B}}) + {\rm{P}}(\bar B) \cdot {\rm{P}}({\rm{A}}\mid \bar B) = 0,4 \cdot 0,96 + 0,6 \cdot 0,97 = 0,966.\)

b) Xét biến cố C: "Linh kiện được lấy ra từ lô hàng là linh kiện phế phẩm".

Khi đó, ta có \({\rm{C}} = \bar A\). Suy ra \({\rm{P}}({\rm{C}}) = {\rm{P}}(\bar A) = 1 - {\rm{P}}({\rm{A}}) = 1 - 0,966 = 0,034\).

Theo bài ra ta có: \(P(C\mid B) = 4\%  = 0,04\).

Do đó, nếu linh kiện được lấy ra là linh kiện phế phẩm thì xác suất sản phẩm đó do nhà máy I sản xuất là: \({\rm{P}}({\rm{B}}\mid {\rm{C}}) = \frac{{P(B) \cdot P(C\mid B)}}{{P(C)}} = \frac{{0,4 \cdot 0,04}}{{0,034}} = \frac{8}{{17}}\).

Nếu linh kiện được lấy ra là linh kiện phế phẩm thì xác suất sản phẩm đó do nhà máy II sản xuất là: \({\rm{P}}(\bar B\mid {\rm{C}}) = 1 - {\rm{P}}({\rm{B}}\mid {\rm{C}}) = 1 - \frac{8}{{17}} = \frac{9}{{17}}\).

Vi \(\frac{9}{{17}} > \frac{8}{{17}}\) nên nếu linh kiện được lấy ra là linh kiện phế phẩm thì xác suất linh kiện đó do nhà máy II sản xuất là cao hơn.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP