Có hai chiếc hộp, hộp I chứa 5 viên bi màu trắng và 5 viên bi màu đen, hộp II chứa 6 viên bi màu trắng và 4 viên bi màu đen, các viên bi có cùng kích thước và khối lượng. Lấy ngẫu nhiên một viên bi từ hộp I bỏ sang hộp II . Sau đó lấy ra ngẫu nhiên một viên bi từ hộp II.
a) Tính xác suất để viên bi được lấy ra từ hộp II là viên bi màu trắng.
b) Giả sử viên bi được lấy ra từ hộp II là viên bi màu trắng. Tính xác suất để viên bi màu trắng đó thuộc hộp I .
Có hai chiếc hộp, hộp I chứa 5 viên bi màu trắng và 5 viên bi màu đen, hộp II chứa 6 viên bi màu trắng và 4 viên bi màu đen, các viên bi có cùng kích thước và khối lượng. Lấy ngẫu nhiên một viên bi từ hộp I bỏ sang hộp II . Sau đó lấy ra ngẫu nhiên một viên bi từ hộp II.
a) Tính xác suất để viên bi được lấy ra từ hộp II là viên bi màu trắng.
b) Giả sử viên bi được lấy ra từ hộp II là viên bi màu trắng. Tính xác suất để viên bi màu trắng đó thuộc hộp I .
Quảng cáo
Trả lời:

a) Xét các biến cố:
A: "Lấy được viên bi màu trắng từ hộp II ";
\(B\) : "Lấy được viên bi màu trắng từ hộp I bỏ sang hộp II";
\(\bar B\) : "Lấy được viên bi màu đen từ hộp I bỏ sang hộp II".
Theo giả thiết ta có: \({\rm{P}}(B) = {\rm{P}}(\bar B) = \frac{5}{{10}} = \frac{1}{2};{\rm{P}}(A\mid B) = \frac{7}{{11}};{\rm{P}}(A\mid \bar B) = \frac{6}{{11}}.\)
Theo công thức xác suất toàn phần, ta có:
\({\rm{P}}(A) = {\rm{P}}(B) \cdot {\rm{P}}(A\mid B) + {\rm{P}}(\bar B) \cdot {\rm{P}}(A\mid \bar B) = \frac{1}{2} \cdot \frac{7}{{11}} + \frac{1}{2} \cdot \frac{6}{{11}} = \frac{{13}}{{22}}.\)
Vậy xác suất để viên bi được lấy ra từ hộp II là viên bi màu trắng là \(\frac{{13}}{{22}}\).
b) Gọi \(N\) là biến cố "Viên bi được lấy ra từ hộp II là viên bi thuộc hộp I ". Khi đó ta cần tính \({\rm{P}}(N\mid A)\).
Ta có: \({\rm{P}}(N) = \frac{1}{{11}};{\rm{P}}(A) = \frac{{13}}{{22}}\). Để tính \({\rm{P}}(A\mid N)\), hay xác suất để lấy được viên bi màu trắng từ hộp II , biết rằng viên bi đó thuộc hộp I , ta xét các trường hợp sau:
- Viên bi được lấy từ hộp I bỏ sang hộp II có màu đen. Khi đó xác suất lấy được viên bi trắng thuộc hộp I bằng 0 .
- Viên bi được lấy từ hộp I bỏ sang hộp II có màu trắng. Khi đó xác suất lấy được viên bi màu trắng thuộc hộp I bằng \({\rm{P}}(B) = \frac{1}{2}\).
Do đó, \({\rm{P}}(A\mid N) = 0 + \frac{1}{2} = \frac{1}{2}\). Theo công thức Bayes, ta có:
\({\rm{P}}(N\mid A) = \frac{{{\rm{P}}(A\mid N) \cdot {\rm{P}}(N)}}{{{\rm{P}}(A)}} = \frac{{\frac{1}{2} \cdot \frac{1}{{11}}}}{{\frac{{13}}{{22}}}} = \frac{1}{{13}}.\)
Vậy xác suất viên bi được lấy ra từ hộp II là viên bi thuộc hộp I , biết rằng viên bi đó màu trắng, là \(\frac{1}{{13}}\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(A\) là biến cố: "Bà \(N\) bị bệnh hiểm nghèo \(Y\) "; \(B\) là biến cố: "Xét nghiệm cho kết quả dương tính".
a) Trước khi tiến hành xét nghiệm, xác suất không mắc bệnh hiểm nghèo Y của bà N là
\(P(\bar A) = 1 - P(A) = 1 - 0,005 = 0,995.{\rm{ }}\)
b) Ta cần tính \(P(\bar A\mid \bar B)\).
Theo công thức Bayes ta có: \(P(\bar A\mid \bar B) = \frac{{P(\bar A) \cdot P(\bar B\mid \bar A)}}{{P(\bar A) \cdot P(\bar B\mid \bar A) + P(A) \cdot P(\bar B\mid A)}}.\)
\(P(\bar B\mid \bar A)\) là xác suất để bà \(N\) có xét nghiệm là âm tính nếu bà \(N\) không bị bệnh \(Y\).
Theo bài ra ta có: \(P(\bar B\mid \bar A) = 0,97{\rm{;}}\)
\(P(\bar B\mid A)\) là xác suất để bà N có xét nghiệm âm tính nếu bà N bị bệnh Y
\(P(\bar B\mid A) = 1 - 0,94 = 0,06.{\rm{ }}\)
Thay vào công thức Bayes ta có: \(P(\bar A\mid \bar B) = \frac{{0,995 \cdot 0,97}}{{0,995 \cdot 0,97 + 0,005 \cdot 0,06}} \approx 0,9997.\)
Như vậy, với xét nghiệm cho kết quả âm tính, xác suất không mắc bệnh Y của bà N tăng lên thành \(99,97\% \) (trước xét nghiệm là \(99,5\% \) ).
Lời giải
Xét hai biến cố:
A: "Con bò được chọn ra không bị mắc bệnh bò điên".
B: "Con bò được chọn ra có phản ứng dương tính".
Vỉ tỉ lệ bò bị mắc bệnh bò điên ở Hà Lan là 13 con trên 1000000 con nên tỉ lệ bò mắc bệnh bò điên ở Hà Lan là \({\rm{P}}(\bar A) = 0,000013\).
Suy ra \(P(A) = 1 - 0,000013 = 0,999987\).
Trong số những con bò không bị mắc bệnh thì xác suất để có phản ứng dương tính trong xét nghiệm A là \(10\% \), suy ra \({\rm{P}}({\rm{B}}\mid {\rm{A}}) = 0,1\).
Khi con bò mắc bệnh bò điên thì xác suất để có phản ứng dương tính trong xét nghiệm A là \(70\% \) nên \({\rm{P}}({\rm{B}}\mid \bar A) = 0,7\).
Ta thấy xác suất mắc bệnh bò điên của một con bò ở Hà Lan xét nghiệm có phản ứng dương tính với xét nghiệm A chính là \({\rm{P}}(\bar A\mid {\rm{B}})\). Áp dụng công thức Bayes, ta có:
\(P(\bar A\mid B) = \frac{{P(\bar A) \cdot P(B\mid \bar A)}}{{P(\bar A) \cdot P(B\mid \bar A) + P(A) \cdot P(B\mid A)}}\)
\( = \frac{{0,000013 \cdot 0,7}}{{0,000013 \cdot 0,7 + 0,999987 \cdot 0,1}} \approx 0,000091.\)
Vậy khi một con bò ở Hà Lan có phản ứng dương tính với xét nghiệm A thì xác suất để nó bị mắc bệnh bò điên là 0,000091 .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.