Một chiếc hộp có 40 viên bi, trong đó có 12 viên bi màu đỏ và 28 viên bi màu vàng; các viên bi có kích thước và khối lượng như nhau. Bạn Ngân lấy ngẫu nhiên viên bi từ chiếc hộp đó hai lần, mỗi lần lấy ra một viên bi và viên bi được lấy ra không bỏ lại hộp. Tính xác suất để cả hai lần bạn Ngân đều lấy ra được viên bi màu vàng.
Một chiếc hộp có 40 viên bi, trong đó có 12 viên bi màu đỏ và 28 viên bi màu vàng; các viên bi có kích thước và khối lượng như nhau. Bạn Ngân lấy ngẫu nhiên viên bi từ chiếc hộp đó hai lần, mỗi lần lấy ra một viên bi và viên bi được lấy ra không bỏ lại hộp. Tính xác suất để cả hai lần bạn Ngân đều lấy ra được viên bi màu vàng.
Quảng cáo
Trả lời:

Xét hai biến cố:
A: "Bạn Ngân lấy được viên bi màu vàng ở lần lấy thứ nhất";
B: "Bạn Ngân lấy được viên bi màu vàng ở lần lấy thứ hai".
Khi đó, xác suất để cả hai lần bạn Ngân đều lấy ra được viên bi màu vàng chính là xác suất có điều kiện \({\rm{P}}({\rm{B}}\mid {\rm{A}})\).
Lấy một viên bi lần thứ nhất có 40 cách chọn, viên bi được lấy ra không bỏ lại hộp nên lấy một viên bi lần thứ hai có 39 cách chọn. Do đó \(n(\Omega ) = 40 \cdot 39\).
Bạn Ngân lấy được viên bi màu vàng ở lần lấy thứ nhất thì có 28 cách chọn, ở lần lấy thứ hai có 39 cách chọn. Do đó, \({\rm{n}}({\rm{A}}) = 28 \cdot 39\).
Bạn Ngân lấy được viên bi màu vàng ở lần lấy thứ nhất thì có 28 cách chọn, lấy ra viên bi màu vàng ở lần lấy thứ hai có 27 cách chọn. Do đó, \({\rm{n}}({\rm{A}} \cap {\rm{B}}) = 28\) . 27.
Khi đó, \({\rm{P}}({\rm{B}}\mid {\rm{A}}) = \frac{{n(A \cap B)}}{{n(A)}} = \frac{{28 \cdot 27}}{{28 \cdot 39}} = \frac{{27}}{{39}} = \frac{9}{{13}}\).
Vậy xác suất để cả hai lần bạn Ngân đều lấy ra được viên bi màu vàng là \(\frac{9}{{13}}\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xét các biến cố:
M: "Con bò ở Hà Lan bị bệnh bò điên";
D: "Con bò ở Hà Lan có phản ứng dương tính với xét nghiệm A ".
Theo giả thiết, ta có: \({\rm{P}}(M) = 0,000013;{\rm{P}}(D\mid M) = 0,7;{\rm{P}}(D\mid \bar M) = 0,1\).
Theo công thức xác suất toàn phần, ta có:
\({\rm{P}}(D) = {\rm{P}}(M) \cdot {\rm{P}}(D\mid M) + {\rm{P}}(\bar M) \cdot {\rm{P}}(D\mid \bar M) = 0,000013 \cdot 0,7 + (1 - 0,000013) \cdot 0,1\)\( = 0,1000078.\)
Theo công thức Bayes, ta có: \(P(M\mid D) = \frac{{{\rm{P}}(M) \cdot {\rm{P}}(D\mid M)}}{{{\rm{P}}(D)}} = \frac{{0,000013 \cdot 0,7}}{{0,1000078}} = \frac{{91}}{{1000078}}.\)
Vậy xác suất để một con bò Hà Lan bị bệnh bò điên nếu nó phản ứng dương tính với xét nghiệm A là \(\frac{{91}}{{1000078}}\).
Lời giải
a) Theo bài ra ta có: \(P(A) = 0,8;P(B) = 0,9;P(A \cap B) = 0,8\).
Vi \(P(A) \cdot P(B) = 0,8 \cdot 0,9 = 0,72 \ne 0,8 = P(A \cap B)\) nên hai biến cố \(A\) và \(B\) không độc lập.
b) Ta có xác suất xạ thủ đó bắn trúng bia số 2 , biết xạ thủ bắn trúng bia số 1 chính là xác suất có điều kiện \({\rm{P}}({\rm{B}}\mid {\rm{A}})\).
Khi đó, \({\rm{P}}({\rm{B}}\mid {\rm{A}}) = \frac{{P(A \cap B)}}{{P(A)}} = \frac{{0,8}}{{0,8}} = 1\).
Vậy nếu biết xạ thủ đó bắn trúng bia số 1 thì xác suất xạ thủ đó bắn trúng bia số 2 là 1 .
c) Ta có xác suất xạ thủ đó bắn trúng bia số 2 , biết xạ thủ không bắn trúng bia số 1 chính là xác suất có điều kiện \({\rm{P}}({\rm{B}}\mid \bar A)\).
Áp dụng công thức xác suất toàn phần, ta có:
\({\rm{P}}({\rm{B}}) = {\rm{P}}({\rm{A}}) \cdot {\rm{P}}({\rm{B}}\mid {\rm{A}}) + {\rm{P}}(\bar A) \cdot {\rm{P}}({\rm{B}}\mid \bar A).\)
Suy ra \({\rm{P}}({\rm{B}}\mid \bar A) = \frac{{P(B) - P(A) \cdot P(B\mid A)}}{{P(\bar A)}} = \frac{{0,9 - 0,8 \cdot 1}}{{1 - 0,8}} = 0,5\).
Vậy nếu biết xạ thủ đó không bắn trúng bia số 1 thì xác suất xạ thủ đó bắn trúng bia số 2 là 0,5 .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.