Câu hỏi:

23/08/2025 150 Lưu

Tỉ lệ người dân đã tiêm vắc xin phòng bệnh A ở một địa phương là \(65\% \). Trong số những người đã tiêm phòng, tì lệ mắc bệnh A là \(5\% \); trong số những người chưa tiêm phòng, tỉ lệ mắc bệnh A là \(17\% \). Chọn ngấu nhiên một người ở địa phương đó.

a) Tính xác suất người được chọn mắc bệnh A .

b) Biết rằng người được chọn mắc bệnh A . Tính xác suất người đó chưa tiêm vắc xin phòng bệnh A .

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi A là biến cố "Người được chọn đã tiêm vắc xin phòng bệnh A " và B là biến cố "Người được chọn mắc bệnh \({\rm{A}}\)".

Ta có \({\rm{P}}({\rm{A}}) = 0,65;{\rm{P}}({\rm{B}}\mid {\rm{A}}) = 0,05;P(B\mid \bar A) = 0,17\)

Suy ra \(P(\bar A) = 1 - P(A) = 0,35\)

a) \(P(B) = P(A) \cdot P(B\mid A) + P(\bar A) \cdot P(B\mid \bar A) = 0,65 \cdot 0,05 + 0,35 \cdot 0,17 = \) 0,092 .

b) Cần tính \(P(\bar A\mid B)\).  Ta có \(P(\bar A\mid B) = \frac{{P(\bar A) \cdot P(B\mid \bar A)}}{{P(B)}} = \frac{{0,35.0,17}}{{0,992}} \approx 0,6467\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Xét hai biến cố:

A: "Linh kiện được lấy ra từ lô hàng là linh kiện tốt”;

B: "Linh kiện được lấy ra từ lô hàng do nhà máy I sản xuất".

Vi lô linh kiện để lẫn lộn 80 sản phẩm của nhà máy số I và 120 sản phẩm của nhà máy số II nên \(P(B) = \frac{{80}}{{80 + 120}} = 0,4\), suy ra \(P(\bar B) = 1 - 0,4 = 0,6\).

Vì tỉ lệ phế phẩm của các nhà máy I, II lần lượt là: \(4\% ;3\% \) nên tỉ lệ thành phẩm (linh kiện tốt) của các nhà máy I, II lần lượt là \(96\% ;97\% \).

Do đó \({\rm{P}}({\rm{A}}\mid {\rm{B}}) = 0,96\) và \({\rm{P}}({\rm{A}}\mid \bar B) = 0,97\).

Áp dụng công thức xác suất toàn phần, ta có xác suất để linh kiện được lấy ra là linh kiện tốt là:

\({\rm{P}}({\rm{A}}) = {\rm{P}}({\rm{B}}) \cdot {\rm{P}}({\rm{A}}\mid {\rm{B}}) + {\rm{P}}(\bar B) \cdot {\rm{P}}({\rm{A}}\mid \bar B) = 0,4 \cdot 0,96 + 0,6 \cdot 0,97 = 0,966.\)

b) Xét biến cố C: "Linh kiện được lấy ra từ lô hàng là linh kiện phế phẩm".

Khi đó, ta có \({\rm{C}} = \bar A\). Suy ra \({\rm{P}}({\rm{C}}) = {\rm{P}}(\bar A) = 1 - {\rm{P}}({\rm{A}}) = 1 - 0,966 = 0,034\).

Theo bài ra ta có: \(P(C\mid B) = 4\%  = 0,04\).

Do đó, nếu linh kiện được lấy ra là linh kiện phế phẩm thì xác suất sản phẩm đó do nhà máy I sản xuất là: \({\rm{P}}({\rm{B}}\mid {\rm{C}}) = \frac{{P(B) \cdot P(C\mid B)}}{{P(C)}} = \frac{{0,4 \cdot 0,04}}{{0,034}} = \frac{8}{{17}}\).

Nếu linh kiện được lấy ra là linh kiện phế phẩm thì xác suất sản phẩm đó do nhà máy II sản xuất là: \({\rm{P}}(\bar B\mid {\rm{C}}) = 1 - {\rm{P}}({\rm{B}}\mid {\rm{C}}) = 1 - \frac{8}{{17}} = \frac{9}{{17}}\).

Vi \(\frac{9}{{17}} > \frac{8}{{17}}\) nên nếu linh kiện được lấy ra là linh kiện phế phẩm thì xác suất linh kiện đó do nhà máy II sản xuất là cao hơn.

Lời giải

a) Xét hai biến cố: \(K\) : "Người được chọn ra không mắc bệnh";

\(D\) : "Người được chọn ra có phản ứng dương tính".

Do tỉ lệ người mắc bệnh là \(0,1\%  = 0,001\) nên \({\rm{P}}(K) = 1 - 0,001 = 0,999\).

Trong số những người không mắc bệnh có \(5\% \) số người có phản ứng dương tính nên \({\rm{P}}(D\mid K) = 5\%  = 0,05\). Vì ai mắc bệnh khi xét nghiệm cũng có phản ứng dương tính nên \({\rm{P}}(D\mid \bar K) = 1\).

Sơ đồ hình cây ở Hình 3 biểu thi tình huống đã cho.

Giả sử có một loại bệnh mà tỉ lệ người mắc bệnh là 0,1 phần trăm. Giả sử có một loại xét nghiệm, mà ai mắc bệnh khi xét nghiệm cũng có phản ứng dương tính (ảnh 1)

b) Ta thấy: Khả năng mắc bệnh của một người xét nghiệm có phản ứng dương tính chính là \({\rm{P}}(\bar K\mid D)\). Áp dụng công thức Bayes, ta có:

\({\rm{P}}(\bar K\mid D) = \frac{{{\rm{P}}(\bar K) \cdot {\rm{P}}(D\mid \bar K)}}{{{\rm{P}}(\bar K) \cdot {\rm{P}}(D\mid \bar K) + {\rm{P}}(K) \cdot {\rm{P}}(D\mid K)}} = \frac{{0,001}}{{0,001 + 0,999 \cdot 0,05}} \approx 1,96\% .\)

Vậy xác suất mắc bệnh của một người xét nghiệm có phản ứng dương tính là \(1,96\% \).