Ở một khu rừng nọ có 7 chú lùn, trong đó có 4 chú luôn nói thật, 3 chú còn lại luôn tự nhận mình nói thật nhưng xác suất để mỗi chú này nói thật là 0,5 . Bạn Tuyết gặp ngẫu nhiên một chú lùn. Gọi \(A\) là biến cố "Chú lùn đó luôn nói thật" và \(B\) là biến cố "Chú lùn đó tự nhận mình luôn nói thật".
a) Tính xác suất của các biến cố \(A\) và \(B\).
b) Biết rằng chú lùn mà bạn Tuyết gặp tự nhận mình là người luôn nói thật. Tính xác suất để chú lùn đó luôn nói thật.
Ở một khu rừng nọ có 7 chú lùn, trong đó có 4 chú luôn nói thật, 3 chú còn lại luôn tự nhận mình nói thật nhưng xác suất để mỗi chú này nói thật là 0,5 . Bạn Tuyết gặp ngẫu nhiên một chú lùn. Gọi \(A\) là biến cố "Chú lùn đó luôn nói thật" và \(B\) là biến cố "Chú lùn đó tự nhận mình luôn nói thật".
a) Tính xác suất của các biến cố \(A\) và \(B\).
b) Biết rằng chú lùn mà bạn Tuyết gặp tự nhận mình là người luôn nói thật. Tính xác suất để chú lùn đó luôn nói thật.
Quảng cáo
Trả lời:

A là biến cố "Chú lùn đó luôn nói thật" và B là biến cố "Chú lùn đó nhận mình là người luôn nói thật".
a) Trong 7 chú lún có 4 chú lùn luôn nói thật nên \(P(A) = \frac{4}{7}\). Suy ra \(P(\bar A) = \frac{3}{7}\).
Theo đề ta có \({\rm{P}}({\rm{B}}\mid {\rm{A}}) = 1;P(B\mid \bar A) = 0,5\).
Ta cần tính \({\rm{P}}({\rm{B}})\). Ta có \(P(B) = P(A) \cdot P(B\mid A) + P(\bar A) \cdot P(B\mid \bar A) = \frac{4}{7} \cdot 1 + \frac{3}{7} \cdot 0,5 = \frac{{11}}{{14}}\).
b) Cần tính \({\rm{P}}({\rm{A}}\mid {\rm{B}})\). Ta có \(P(A\mid B) = \frac{{P(A) \cdot P(B\mid A)}}{{P(B)}} = \frac{{\frac{4}{7} \cdot 1}}{{\frac{{11}}{{14}}}} = \frac{8}{{11}}\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(A\) là biến cố: "Bà \(N\) bị bệnh hiểm nghèo \(Y\) "; \(B\) là biến cố: "Xét nghiệm cho kết quả dương tính".
a) Trước khi tiến hành xét nghiệm, xác suất không mắc bệnh hiểm nghèo Y của bà N là
\(P(\bar A) = 1 - P(A) = 1 - 0,005 = 0,995.{\rm{ }}\)
b) Ta cần tính \(P(\bar A\mid \bar B)\).
Theo công thức Bayes ta có: \(P(\bar A\mid \bar B) = \frac{{P(\bar A) \cdot P(\bar B\mid \bar A)}}{{P(\bar A) \cdot P(\bar B\mid \bar A) + P(A) \cdot P(\bar B\mid A)}}.\)
\(P(\bar B\mid \bar A)\) là xác suất để bà \(N\) có xét nghiệm là âm tính nếu bà \(N\) không bị bệnh \(Y\).
Theo bài ra ta có: \(P(\bar B\mid \bar A) = 0,97{\rm{;}}\)
\(P(\bar B\mid A)\) là xác suất để bà N có xét nghiệm âm tính nếu bà N bị bệnh Y
\(P(\bar B\mid A) = 1 - 0,94 = 0,06.{\rm{ }}\)
Thay vào công thức Bayes ta có: \(P(\bar A\mid \bar B) = \frac{{0,995 \cdot 0,97}}{{0,995 \cdot 0,97 + 0,005 \cdot 0,06}} \approx 0,9997.\)
Như vậy, với xét nghiệm cho kết quả âm tính, xác suất không mắc bệnh Y của bà N tăng lên thành \(99,97\% \) (trước xét nghiệm là \(99,5\% \) ).
Lời giải
a) Xét hai biến cố: \(K\) : "Người được chọn ra không mắc bệnh";
\(D\) : "Người được chọn ra có phản ứng dương tính".
Do tỉ lệ người mắc bệnh là \(0,1\% = 0,001\) nên \({\rm{P}}(K) = 1 - 0,001 = 0,999\).
Trong số những người không mắc bệnh có \(5\% \) số người có phản ứng dương tính nên \({\rm{P}}(D\mid K) = 5\% = 0,05\). Vì ai mắc bệnh khi xét nghiệm cũng có phản ứng dương tính nên \({\rm{P}}(D\mid \bar K) = 1\).
Sơ đồ hình cây ở Hình 3 biểu thi tình huống đã cho.

b) Ta thấy: Khả năng mắc bệnh của một người xét nghiệm có phản ứng dương tính chính là \({\rm{P}}(\bar K\mid D)\). Áp dụng công thức Bayes, ta có:
\({\rm{P}}(\bar K\mid D) = \frac{{{\rm{P}}(\bar K) \cdot {\rm{P}}(D\mid \bar K)}}{{{\rm{P}}(\bar K) \cdot {\rm{P}}(D\mid \bar K) + {\rm{P}}(K) \cdot {\rm{P}}(D\mid K)}} = \frac{{0,001}}{{0,001 + 0,999 \cdot 0,05}} \approx 1,96\% .\)
Vậy xác suất mắc bệnh của một người xét nghiệm có phản ứng dương tính là \(1,96\% \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.