Câu hỏi:

23/08/2025 36 Lưu

Trong một kì thi tốt nghiệp trung học phổ thông, một tỉnh \(X\) có 80 % học sinh lựa chọn tổ hợp A 00 (gồm các môn Toán, Vật lí, Hoá học). Biết rằng, nếu một học sinh chọn tổ hợp A00 thì xác suất để học sinh đó đỗ đại học là 0,6 ; còn nếu một học sinh không chọn tổ hợp A 00 thì xác suất để học sinh đó đỗ đại học là 0,7 . Chọn ngẫu nhiền một học sinh của tỉnh X đã tốt nghiệp trung học phổ thông trong kì thi trên. Biết rằng học sinh này đã đỗ đại học. Tính xác suất để học sinh đó chọn tổ hợp A00.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(A\) là biến cố: "Học sinh đó chọn tổ hợp A00 "; \(B\) là biến cố: "Học sinh đó đỗ đại học". Ta cần tính \(P(A\mid B)\). Theo công thức Bayes, ta cần biết: \(P(A),P(\bar A),P(B\mid A)\) và \(P(B\mid \bar A)\). Ta có: \(P(A) = 0,8;P(\bar A) = 1 - P(A) = 1 - 0,8 = 0,2\).

\(P(B\mid A)\) là xác suất để một học sinh đỗ đại học với điều kiện học sinh đó chọn tổ hợp A 00 \( \Rightarrow P(B\mid A) = 0,6\).

\(P(B\mid \bar A)\) là xác suất để một học sinh đõ̃ đại học với điều kiện học sinh đó không chọn tổ hợp \({\rm{A}}00 \Rightarrow P(B\mid \bar A) = 0,7\).

Thay vào công thức Bayes ta được:

\(P(A\mid B) = \frac{{P(A) \cdot P(B\mid A)}}{{P(A) \cdot P(B\mid A) + P(\bar A) \cdot P(B\mid \bar A)}} = \frac{{0,8 \cdot 0,6}}{{0,8 \cdot 0,6 + 0,2 \cdot 0,7}} \approx 0,7742.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(A\) là biến cố: "Bà \(N\) bị bệnh hiểm nghèo \(Y\) "; \(B\) là biến cố: "Xét nghiệm cho kết quả dương tính".

a) Trước khi tiến hành xét nghiệm, xác suất không mắc bệnh hiểm nghèo Y của bà N là

\(P(\bar A) = 1 - P(A) = 1 - 0,005 = 0,995.{\rm{ }}\)

b) Ta cần tính \(P(\bar A\mid \bar B)\).

Theo công thức Bayes ta có: \(P(\bar A\mid \bar B) = \frac{{P(\bar A) \cdot P(\bar B\mid \bar A)}}{{P(\bar A) \cdot P(\bar B\mid \bar A) + P(A) \cdot P(\bar B\mid A)}}.\)

\(P(\bar B\mid \bar A)\) là xác suất để bà \(N\) có xét nghiệm là âm tính nếu bà \(N\) không bị bệnh \(Y\).

Theo bài ra ta có: \(P(\bar B\mid \bar A) = 0,97{\rm{;}}\)

\(P(\bar B\mid A)\) là xác suất để bà N có xét nghiệm âm tính nếu bà N bị bệnh Y

\(P(\bar B\mid A) = 1 - 0,94 = 0,06.{\rm{ }}\)

Thay vào công thức Bayes ta có: \(P(\bar A\mid \bar B) = \frac{{0,995 \cdot 0,97}}{{0,995 \cdot 0,97 + 0,005 \cdot 0,06}} \approx 0,9997.\)

Như vậy, với xét nghiệm cho kết quả âm tính, xác suất không mắc bệnh Y của bà N tăng lên thành \(99,97\% \) (trước xét nghiệm là \(99,5\% \) ).

Lời giải

Xét hai biến cố:

A: "Con bò được chọn ra không bị mắc bệnh bò điên".

B: "Con bò được chọn ra có phản ứng dương tính".

Vỉ tỉ lệ bò bị mắc bệnh bò điên ở Hà Lan là 13 con trên 1000000 con nên tỉ lệ bò mắc bệnh bò điên ở Hà Lan là \({\rm{P}}(\bar A) = 0,000013\).

Suy ra \(P(A) = 1 - 0,000013 = 0,999987\).

Trong số những con bò không bị mắc bệnh thì xác suất để có phản ứng dương tính trong xét nghiệm A là \(10\% \), suy ra \({\rm{P}}({\rm{B}}\mid {\rm{A}}) = 0,1\).

Khi con bò mắc bệnh bò điên thì xác suất để có phản ứng dương tính trong xét nghiệm A là \(70\% \) nên \({\rm{P}}({\rm{B}}\mid \bar A) = 0,7\).

Ta thấy xác suất mắc bệnh bò điên của một con bò ở Hà Lan xét nghiệm có phản ứng dương tính với xét nghiệm A chính là \({\rm{P}}(\bar A\mid {\rm{B}})\). Áp dụng công thức Bayes, ta có:

\(P(\bar A\mid B) = \frac{{P(\bar A) \cdot P(B\mid \bar A)}}{{P(\bar A) \cdot P(B\mid \bar A) + P(A) \cdot P(B\mid A)}}\)

\( = \frac{{0,000013 \cdot 0,7}}{{0,000013 \cdot 0,7 + 0,999987 \cdot 0,1}} \approx 0,000091.\)

Vậy khi một con bò ở Hà Lan có phản ứng dương tính với xét nghiệm A thì xác suất để nó bị mắc bệnh bò điên là 0,000091 .