Trong \(Y\) học, để chẩn đoán bệnh \(X\) nào đó, người ta thường dùng một xét nghiệm. Xét nghiệm dương tính, tức là xét nghiệm đó kết luận một người mắc bệnh \(X\). Xét nghiệm âm tính, tức là xét nghiệm đó kết luận một người không mắc bệnh \(X\). Vỉ không có một xét nghiệm nào tuyệt đối đưng nên trên thực tế có thể xảy ra hai sai lầm sau:
- Xét nghiệm dương tính nhưng thực tế người xét nghiệm không mắc bệnh. Ta gọi đây là dương tính giả.
- Xét nghiệm âm tính nhưng thực tế người xét nghiệm lại mắc bệnh. Ta gọi đây là âm tính giả.
Ông \(M\) đi xét nghiệm bệnh hiểm nghèo \(X\). Biết rằng, nếu một người mắc bệnh \(X\) thì với xác suất 0,95 xét nghiệm cho dương tính; nếu một người không bị bệnh \(X\) thì với xác suất 0,01 xét nghiệm cho dương tính.
Xét nghiệm của ông \(M\) cho kết quả dương tính. Ông \(M\) hoảng hốt khi nghĩ rằng mình có xác suất 0,95 mắc bệnh hiểm nghèo \(X\).
Thống kê cho thấy tỉ lệ dân số mắc bệnh hiểm nghèo X là \(0,2\% \).
a) Trước khi tiến hành xét nghiệm, xác suất mắc bệnh hiểm nghèo \(X\) của ông M là bao nhiêu?
b) Sau khi xét nghiệm cho kết quả dương tính, xác suất mắc bệnh hiểm nghèo \(X\) của ông M là bao nhiêu?
Trong \(Y\) học, để chẩn đoán bệnh \(X\) nào đó, người ta thường dùng một xét nghiệm. Xét nghiệm dương tính, tức là xét nghiệm đó kết luận một người mắc bệnh \(X\). Xét nghiệm âm tính, tức là xét nghiệm đó kết luận một người không mắc bệnh \(X\). Vỉ không có một xét nghiệm nào tuyệt đối đưng nên trên thực tế có thể xảy ra hai sai lầm sau:
- Xét nghiệm dương tính nhưng thực tế người xét nghiệm không mắc bệnh. Ta gọi đây là dương tính giả.
- Xét nghiệm âm tính nhưng thực tế người xét nghiệm lại mắc bệnh. Ta gọi đây là âm tính giả.
Ông \(M\) đi xét nghiệm bệnh hiểm nghèo \(X\). Biết rằng, nếu một người mắc bệnh \(X\) thì với xác suất 0,95 xét nghiệm cho dương tính; nếu một người không bị bệnh \(X\) thì với xác suất 0,01 xét nghiệm cho dương tính.
Xét nghiệm của ông \(M\) cho kết quả dương tính. Ông \(M\) hoảng hốt khi nghĩ rằng mình có xác suất 0,95 mắc bệnh hiểm nghèo \(X\).
Thống kê cho thấy tỉ lệ dân số mắc bệnh hiểm nghèo X là \(0,2\% \).
a) Trước khi tiến hành xét nghiệm, xác suất mắc bệnh hiểm nghèo \(X\) của ông M là bao nhiêu?
b) Sau khi xét nghiệm cho kết quả dương tính, xác suất mắc bệnh hiểm nghèo \(X\) của ông M là bao nhiêu?
Quảng cáo
Trả lời:

a) Vỉ thống kê cho thấy tỉ lệ dân số mắc bệnh hiểm nghèo \(X\) là \(0,2\% \) nên trước khi tiến hành xét nghiệm, xác suất mắc bệnh hiểm nghèo X của ông M là \({\rm{p}} = \) \(0,2\% = 0,002\).
b) Gọi A là biến cố: "Ông M mắc bệnh hiểm nghèo X "; B là biến cố: "Xét nghiệm cho kết quả dương tính".
Khi đó xác suất mắc bệnh hiểm nghèo \(X\) của ông \(M\) sau khi xét nghiệm cho kết quả dương tính chính là xác suất \({\rm{P}}({\rm{A}}\mid {\rm{B}})\).
Áp dụng công thức ta có: \({\rm{P}}({\rm{A}}\mid {\rm{B}}) = \frac{{P(A) \cdot P(B\mid A)}}{{P(A) \cdot P(B\mid A) + P(\bar A) \cdot P(B\mid \bar A)}}.\)
Theo câu a) ta có: \(P(A) = p = 0,002\). Suy ra \(P(\bar A) = 1 - P(A) = 1 - 0,002 = 0,998\).
\({\rm{P}}({\rm{B}}\mid {\rm{A}})\) là xác suất xét nghiệm cho kết quả dương tính nếu ông M mắc bệnh hiểm nghèo \(X\). Theo bài ra ta có \({\rm{P}}({\rm{B}}\mid {\rm{A}}) = 0,95\).
\({\rm{P}}({\rm{B}}\mid \bar A)\) là xác suất xét nghiệm cho kết quả dương tính nếu ông M không mắc bệnh hiểm nghèo X . Theo bài ra ta có \({\rm{P}}({\rm{B}}\mid \bar A) = 0,01\).
Khi đó, thay vào công thức Bayes ta được: \(P(A\mid B) = \frac{{0,002 \cdot 0,95}}{{0,002 \cdot 0,95 + 0,998 \cdot 0,01}} \approx 0,16.{\rm{ }}\)
Vậy sau khi xét nghiệm cho kết quả dương tính, xác suất mắc bệnh hiểm nghèo \(X\) của ông \(M\) là khoảng 0,16 .
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xét các biến cố:
M: "Con bò ở Hà Lan bị bệnh bò điên";
D: "Con bò ở Hà Lan có phản ứng dương tính với xét nghiệm A ".
Theo giả thiết, ta có: \({\rm{P}}(M) = 0,000013;{\rm{P}}(D\mid M) = 0,7;{\rm{P}}(D\mid \bar M) = 0,1\).
Theo công thức xác suất toàn phần, ta có:
\({\rm{P}}(D) = {\rm{P}}(M) \cdot {\rm{P}}(D\mid M) + {\rm{P}}(\bar M) \cdot {\rm{P}}(D\mid \bar M) = 0,000013 \cdot 0,7 + (1 - 0,000013) \cdot 0,1\)\( = 0,1000078.\)
Theo công thức Bayes, ta có: \(P(M\mid D) = \frac{{{\rm{P}}(M) \cdot {\rm{P}}(D\mid M)}}{{{\rm{P}}(D)}} = \frac{{0,000013 \cdot 0,7}}{{0,1000078}} = \frac{{91}}{{1000078}}.\)
Vậy xác suất để một con bò Hà Lan bị bệnh bò điên nếu nó phản ứng dương tính với xét nghiệm A là \(\frac{{91}}{{1000078}}\).
Lời giải
a) Theo bài ra ta có: \(P(A) = 0,8;P(B) = 0,9;P(A \cap B) = 0,8\).
Vi \(P(A) \cdot P(B) = 0,8 \cdot 0,9 = 0,72 \ne 0,8 = P(A \cap B)\) nên hai biến cố \(A\) và \(B\) không độc lập.
b) Ta có xác suất xạ thủ đó bắn trúng bia số 2 , biết xạ thủ bắn trúng bia số 1 chính là xác suất có điều kiện \({\rm{P}}({\rm{B}}\mid {\rm{A}})\).
Khi đó, \({\rm{P}}({\rm{B}}\mid {\rm{A}}) = \frac{{P(A \cap B)}}{{P(A)}} = \frac{{0,8}}{{0,8}} = 1\).
Vậy nếu biết xạ thủ đó bắn trúng bia số 1 thì xác suất xạ thủ đó bắn trúng bia số 2 là 1 .
c) Ta có xác suất xạ thủ đó bắn trúng bia số 2 , biết xạ thủ không bắn trúng bia số 1 chính là xác suất có điều kiện \({\rm{P}}({\rm{B}}\mid \bar A)\).
Áp dụng công thức xác suất toàn phần, ta có:
\({\rm{P}}({\rm{B}}) = {\rm{P}}({\rm{A}}) \cdot {\rm{P}}({\rm{B}}\mid {\rm{A}}) + {\rm{P}}(\bar A) \cdot {\rm{P}}({\rm{B}}\mid \bar A).\)
Suy ra \({\rm{P}}({\rm{B}}\mid \bar A) = \frac{{P(B) - P(A) \cdot P(B\mid A)}}{{P(\bar A)}} = \frac{{0,9 - 0,8 \cdot 1}}{{1 - 0,8}} = 0,5\).
Vậy nếu biết xạ thủ đó không bắn trúng bia số 1 thì xác suất xạ thủ đó bắn trúng bia số 2 là 0,5 .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.