Câu hỏi:

23/08/2025 39 Lưu

Có hai đội thi đấu môn Bắn súng. Đội I có 5 vận động viên, đội II có 7 vận động viên. Xác suất đạt huy chương vàng của mỗi vận động viên đội I và đội ll tương ứng là 0,65 và 0,55 . Chọn ngẫu nhiên một vận động viên.

a) Tính xác suất để vận động viên này đạt huy chương vàng;

b) Giả sử vận động viên được chọn đạt huy chương vàng. Tính xác suất để vận động viên này thuộc đội \(I\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Gọi A là biến cố: "VĐV được chọn thuộc đội I";

B là biến cố: "VĐV được chọn thuộc đội II";

E là biến cố: "VĐV được chọn đạt .

(Với VĐV: vận động viên, HCV : huy chương vàng).

Ta có \({\rm{B}} = \bar A\).

Ta cần tính \({\rm{P}}({\rm{E}})\). Theo công thức xác suất toàn phần, ta có

\({\rm{P}}({\rm{E}}) = {\rm{P}}({\rm{A}}) \cdot {\rm{P}}({\rm{E}}\mid {\rm{A}}) + P(\bar A) \cdot P(E\mid \bar A){\rm{. }}\)

Theo bài ra ta có: \(P(A) = \frac{5}{{12}},P(\bar A) = P(B) = \frac{7}{{12}}\).

\({\rm{P}}({\rm{E}}\mid {\rm{A}})\) là xác suất để VĐV thuộc đội I đoạt HCV . Theo bài ra ta có \({\rm{P}}({\rm{E}}\mid {\rm{A}}) = \) 0,65 .

\(P(E\mid \bar A)\) là xác suất để V \(V\) thuộc đội II đoạt HCV . Theo bài ra ta có \(P(E\mid \bar A) = 0,55\).

Thay vào ta được \({\rm{P}}({\rm{E}}) = \frac{5}{{12}} \cdot 0,65 + \frac{7}{{12}} \cdot 0,55 \approx 0,5917\).

Vậy xác suất để vận động viên này đạt huy chương vàng là khoảng 0,5917 .

b) Ta có xác suất để vận động viên được chọn thuộc đội I, biết rằng vận động viên này đạt huy chương vàng, chính là xác suất \({\rm{P}}({\rm{A}}\mid {\rm{E}})\).

Theo công thức Bayes và kết quả ở câu a) ta có

\(P(A\mid E) = \frac{{P(A) \cdot P(E\mid A)}}{{P(E)}} \approx \frac{{\frac{5}{{12}} \cdot 0,65}}{{0,5917}} \approx 0,4577\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(A\) là biến cố: "Bà \(N\) bị bệnh hiểm nghèo \(Y\) "; \(B\) là biến cố: "Xét nghiệm cho kết quả dương tính".

a) Trước khi tiến hành xét nghiệm, xác suất không mắc bệnh hiểm nghèo Y của bà N là

\(P(\bar A) = 1 - P(A) = 1 - 0,005 = 0,995.{\rm{ }}\)

b) Ta cần tính \(P(\bar A\mid \bar B)\).

Theo công thức Bayes ta có: \(P(\bar A\mid \bar B) = \frac{{P(\bar A) \cdot P(\bar B\mid \bar A)}}{{P(\bar A) \cdot P(\bar B\mid \bar A) + P(A) \cdot P(\bar B\mid A)}}.\)

\(P(\bar B\mid \bar A)\) là xác suất để bà \(N\) có xét nghiệm là âm tính nếu bà \(N\) không bị bệnh \(Y\).

Theo bài ra ta có: \(P(\bar B\mid \bar A) = 0,97{\rm{;}}\)

\(P(\bar B\mid A)\) là xác suất để bà N có xét nghiệm âm tính nếu bà N bị bệnh Y

\(P(\bar B\mid A) = 1 - 0,94 = 0,06.{\rm{ }}\)

Thay vào công thức Bayes ta có: \(P(\bar A\mid \bar B) = \frac{{0,995 \cdot 0,97}}{{0,995 \cdot 0,97 + 0,005 \cdot 0,06}} \approx 0,9997.\)

Như vậy, với xét nghiệm cho kết quả âm tính, xác suất không mắc bệnh Y của bà N tăng lên thành \(99,97\% \) (trước xét nghiệm là \(99,5\% \) ).

Lời giải

a) Xét hai biến cố: \(K\) : "Người được chọn ra không mắc bệnh";

\(D\) : "Người được chọn ra có phản ứng dương tính".

Do tỉ lệ người mắc bệnh là \(0,1\%  = 0,001\) nên \({\rm{P}}(K) = 1 - 0,001 = 0,999\).

Trong số những người không mắc bệnh có \(5\% \) số người có phản ứng dương tính nên \({\rm{P}}(D\mid K) = 5\%  = 0,05\). Vì ai mắc bệnh khi xét nghiệm cũng có phản ứng dương tính nên \({\rm{P}}(D\mid \bar K) = 1\).

Sơ đồ hình cây ở Hình 3 biểu thi tình huống đã cho.

Giả sử có một loại bệnh mà tỉ lệ người mắc bệnh là 0,1 phần trăm. Giả sử có một loại xét nghiệm, mà ai mắc bệnh khi xét nghiệm cũng có phản ứng dương tính (ảnh 1)

b) Ta thấy: Khả năng mắc bệnh của một người xét nghiệm có phản ứng dương tính chính là \({\rm{P}}(\bar K\mid D)\). Áp dụng công thức Bayes, ta có:

\({\rm{P}}(\bar K\mid D) = \frac{{{\rm{P}}(\bar K) \cdot {\rm{P}}(D\mid \bar K)}}{{{\rm{P}}(\bar K) \cdot {\rm{P}}(D\mid \bar K) + {\rm{P}}(K) \cdot {\rm{P}}(D\mid K)}} = \frac{{0,001}}{{0,001 + 0,999 \cdot 0,05}} \approx 1,96\% .\)

Vậy xác suất mắc bệnh của một người xét nghiệm có phản ứng dương tính là \(1,96\% \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP