Có hai đội thi đấu môn Bắn súng. Đội I có 5 vận động viên, đội II có 7 vận động viên. Xác suất đạt huy chương vàng của mỗi vận động viên đội I và đội ll tương ứng là 0,65 và 0,55 . Chọn ngẫu nhiên một vận động viên.
a) Tính xác suất để vận động viên này đạt huy chương vàng;
b) Giả sử vận động viên được chọn đạt huy chương vàng. Tính xác suất để vận động viên này thuộc đội \(I\).
Có hai đội thi đấu môn Bắn súng. Đội I có 5 vận động viên, đội II có 7 vận động viên. Xác suất đạt huy chương vàng của mỗi vận động viên đội I và đội ll tương ứng là 0,65 và 0,55 . Chọn ngẫu nhiên một vận động viên.
a) Tính xác suất để vận động viên này đạt huy chương vàng;
b) Giả sử vận động viên được chọn đạt huy chương vàng. Tính xác suất để vận động viên này thuộc đội \(I\).
Quảng cáo
Trả lời:

a) Gọi A là biến cố: "VĐV được chọn thuộc đội I";
B là biến cố: "VĐV được chọn thuộc đội II";
E là biến cố: "VĐV được chọn đạt .
(Với VĐV: vận động viên, HCV : huy chương vàng).
Ta có \({\rm{B}} = \bar A\).
Ta cần tính \({\rm{P}}({\rm{E}})\). Theo công thức xác suất toàn phần, ta có
\({\rm{P}}({\rm{E}}) = {\rm{P}}({\rm{A}}) \cdot {\rm{P}}({\rm{E}}\mid {\rm{A}}) + P(\bar A) \cdot P(E\mid \bar A){\rm{. }}\)
Theo bài ra ta có: \(P(A) = \frac{5}{{12}},P(\bar A) = P(B) = \frac{7}{{12}}\).
\({\rm{P}}({\rm{E}}\mid {\rm{A}})\) là xác suất để VĐV thuộc đội I đoạt HCV . Theo bài ra ta có \({\rm{P}}({\rm{E}}\mid {\rm{A}}) = \) 0,65 .
\(P(E\mid \bar A)\) là xác suất để V \(V\) thuộc đội II đoạt HCV . Theo bài ra ta có \(P(E\mid \bar A) = 0,55\).
Thay vào ta được \({\rm{P}}({\rm{E}}) = \frac{5}{{12}} \cdot 0,65 + \frac{7}{{12}} \cdot 0,55 \approx 0,5917\).
Vậy xác suất để vận động viên này đạt huy chương vàng là khoảng 0,5917 .
b) Ta có xác suất để vận động viên được chọn thuộc đội I, biết rằng vận động viên này đạt huy chương vàng, chính là xác suất \({\rm{P}}({\rm{A}}\mid {\rm{E}})\).
Theo công thức Bayes và kết quả ở câu a) ta có
\(P(A\mid E) = \frac{{P(A) \cdot P(E\mid A)}}{{P(E)}} \approx \frac{{\frac{5}{{12}} \cdot 0,65}}{{0,5917}} \approx 0,4577\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xét các biến cố:
M: "Con bò ở Hà Lan bị bệnh bò điên";
D: "Con bò ở Hà Lan có phản ứng dương tính với xét nghiệm A ".
Theo giả thiết, ta có: \({\rm{P}}(M) = 0,000013;{\rm{P}}(D\mid M) = 0,7;{\rm{P}}(D\mid \bar M) = 0,1\).
Theo công thức xác suất toàn phần, ta có:
\({\rm{P}}(D) = {\rm{P}}(M) \cdot {\rm{P}}(D\mid M) + {\rm{P}}(\bar M) \cdot {\rm{P}}(D\mid \bar M) = 0,000013 \cdot 0,7 + (1 - 0,000013) \cdot 0,1\)\( = 0,1000078.\)
Theo công thức Bayes, ta có: \(P(M\mid D) = \frac{{{\rm{P}}(M) \cdot {\rm{P}}(D\mid M)}}{{{\rm{P}}(D)}} = \frac{{0,000013 \cdot 0,7}}{{0,1000078}} = \frac{{91}}{{1000078}}.\)
Vậy xác suất để một con bò Hà Lan bị bệnh bò điên nếu nó phản ứng dương tính với xét nghiệm A là \(\frac{{91}}{{1000078}}\).
Lời giải
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.