Câu hỏi:

23/08/2025 33 Lưu

Có hai cái hộp giống nhau, hộp thứ nhất chứa 5 quả bóng bàn màu trắng và 3 quả bóng bàn màu vàng, hộp thứ hai chứa 4 quả bóng bàn màu trắng và 6 quả bóng bàn màu vàng. Các quả bóng có cùng kích thước và khối lượng. Minh lấy ra ngẫu nhiên 1 quả bóng từ hộp thứ nhất. Nếu quả bóng đó là bóng vàng thì Minh lấy ra ngẫu nhiên đồng thời 2 quả bóng từ hộp thứ hai; nếu quả bóng đó màu trắng thì Minh lấy ra ngẫu nhiên đồng thời 3 quả bóng từ hộp thứ hai.

a) Sử dụng sơ đồ hình cây, tính xác suất để có đúng 1 quả bóng màu vàng trong các quả bóng lấy ra từ hộp thứ hai.

b) Biết rằng các quả bóng lấy ra từ hộp thứ hai đều có màu trắng. Tính xác suất để quả bóng lấy ra từ hộp thứ nhất có màu vàng.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi A là biến cố "Lấy được quả bóng vàng ở hộp thứ nhất "; B là biến cố “Lấy được đúng 1 quả bóng màu vàng ở hộp thứ hai" và C là biến cố "Các quả bóng lấy ra từ hộp thứ hai đều có màu trắng".

Ta có \(\quad P(A) = \frac{3}{8};P(\bar A) = \frac{5}{8};\quad P(B\mid A) = \frac{{C_6^1 \cdot C_4^1}}{{C_{10}^2}} = \frac{8}{{15}}\);

\(P(B\mid \bar A) = \frac{{C_6^1C_4^2}}{{C_{10}^3}} = \frac{3}{{10}}{\rm{. }}\)

a) Ta có sơ đồ cây

Có hai cái hộp giống nhau, hộp thứ nhất chứa 5 quả bóng bàn màu trắng và 3 quả bóng bàn màu vàng, hộp thứ hai chứa 4 quả bóng bàn màu trắng  (ảnh 1)

Dựa vào sơ đồ cây, ta có \(P(B) = \frac{1}{5} + \frac{3}{{16}} = \frac{{31}}{{80}}\).

b) Ta cần tính \({\rm{P}}({\rm{A}}\mid {\rm{C}})\).

Ta có \(P(A\mid C) = \frac{{P(A) \cdot P(C\mid A)}}{{P(C)}}\)

Ta có \(P(C\mid A) = \frac{{C_4^2}}{{C_{10}^2}} = \frac{2}{{15}};P(C\mid \bar A) = \frac{{C_4^3}}{{C_{10}^3}} = \frac{1}{{30}}\)

Mà \(P(C) = P(A) \cdot P(C\mid A) + P(\bar A) \cdot P(C\mid \bar A) = \frac{3}{8} \cdot \frac{2}{{15}} + \frac{5}{8} \cdot \frac{1}{{30}} = \frac{{17}}{{240}}\).

Vậy \(P(A\mid C) = \frac{3}{8} \cdot \frac{2}{{15}}:\frac{{17}}{{240}} = \frac{{12}}{{17}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(A\) là biến cố: "Bà \(N\) bị bệnh hiểm nghèo \(Y\) "; \(B\) là biến cố: "Xét nghiệm cho kết quả dương tính".

a) Trước khi tiến hành xét nghiệm, xác suất không mắc bệnh hiểm nghèo Y của bà N là

\(P(\bar A) = 1 - P(A) = 1 - 0,005 = 0,995.{\rm{ }}\)

b) Ta cần tính \(P(\bar A\mid \bar B)\).

Theo công thức Bayes ta có: \(P(\bar A\mid \bar B) = \frac{{P(\bar A) \cdot P(\bar B\mid \bar A)}}{{P(\bar A) \cdot P(\bar B\mid \bar A) + P(A) \cdot P(\bar B\mid A)}}.\)

\(P(\bar B\mid \bar A)\) là xác suất để bà \(N\) có xét nghiệm là âm tính nếu bà \(N\) không bị bệnh \(Y\).

Theo bài ra ta có: \(P(\bar B\mid \bar A) = 0,97{\rm{;}}\)

\(P(\bar B\mid A)\) là xác suất để bà N có xét nghiệm âm tính nếu bà N bị bệnh Y

\(P(\bar B\mid A) = 1 - 0,94 = 0,06.{\rm{ }}\)

Thay vào công thức Bayes ta có: \(P(\bar A\mid \bar B) = \frac{{0,995 \cdot 0,97}}{{0,995 \cdot 0,97 + 0,005 \cdot 0,06}} \approx 0,9997.\)

Như vậy, với xét nghiệm cho kết quả âm tính, xác suất không mắc bệnh Y của bà N tăng lên thành \(99,97\% \) (trước xét nghiệm là \(99,5\% \) ).

Lời giải

a) Xét hai biến cố: \(K\) : "Người được chọn ra không mắc bệnh";

\(D\) : "Người được chọn ra có phản ứng dương tính".

Do tỉ lệ người mắc bệnh là \(0,1\%  = 0,001\) nên \({\rm{P}}(K) = 1 - 0,001 = 0,999\).

Trong số những người không mắc bệnh có \(5\% \) số người có phản ứng dương tính nên \({\rm{P}}(D\mid K) = 5\%  = 0,05\). Vì ai mắc bệnh khi xét nghiệm cũng có phản ứng dương tính nên \({\rm{P}}(D\mid \bar K) = 1\).

Sơ đồ hình cây ở Hình 3 biểu thi tình huống đã cho.

Giả sử có một loại bệnh mà tỉ lệ người mắc bệnh là 0,1 phần trăm. Giả sử có một loại xét nghiệm, mà ai mắc bệnh khi xét nghiệm cũng có phản ứng dương tính (ảnh 1)

b) Ta thấy: Khả năng mắc bệnh của một người xét nghiệm có phản ứng dương tính chính là \({\rm{P}}(\bar K\mid D)\). Áp dụng công thức Bayes, ta có:

\({\rm{P}}(\bar K\mid D) = \frac{{{\rm{P}}(\bar K) \cdot {\rm{P}}(D\mid \bar K)}}{{{\rm{P}}(\bar K) \cdot {\rm{P}}(D\mid \bar K) + {\rm{P}}(K) \cdot {\rm{P}}(D\mid K)}} = \frac{{0,001}}{{0,001 + 0,999 \cdot 0,05}} \approx 1,96\% .\)

Vậy xác suất mắc bệnh của một người xét nghiệm có phản ứng dương tính là \(1,96\% \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP