Câu hỏi:

23/08/2025 50 Lưu

Hộp thứ nhất có 1 viên bi xanh và 5 viên bi đỏ. Hộp thứ hai có 3 viên bi xanh và 5 viên bi đỏ. Các viên bi có cùng kích thước và khối lượng. Lấy ra ngẫu nhiên đồng thời hai viên bi từ hộp thứ nhất chuyển sang hộp thứ hai. Sau đó lại lấy ra ngẫu nhiên đồng thời 2 viên bi từ hộp thứ hai.

a) Tính xác suất để hai viên bi lấy ra từ hộp thứ hai là bi đỏ.

b) Biết rằng 2 viên bi lấy ra từ hộp thứ hai là bi đỏ. Tính xác suất để 2 viên bi lấy ra từ hộp thứ nhất cũng là bi đỏ.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi A là biến cố "Lấy được hai viên bi đỏ từ hộp thứ nhất" và B là biến cố "Lấy được hai viên bi đỏ từ hộp thứ \({2^{\prime \prime }}\).

Ta có \(P(A) = \frac{{C_5^2}}{{C_6^2}} = \frac{2}{3}P(B\mid A) = \frac{{C_7^2}}{{C_{10}^2}} = \frac{7}{{15}}\). Suy ra \(P(\bar A) = 1 - P(A) = \frac{1}{3};P(B\mid \bar A) = \frac{{C_6^2}}{{C_{10}^2}} = \frac{1}{3}\).

a) Ta cần tính \({\rm{P}}({\rm{B}})\). Ta có \(P(B) = P(A) \cdot P(B\mid A) + P(\bar A) \cdot P(B\mid \bar A) = \frac{2}{3} \cdot \frac{7}{{15}} + \frac{1}{3} \cdot \frac{1}{3} = \frac{{19}}{{45}}\).

b) Cần tính \({\rm{P}}({\rm{A}}\mid {\rm{B}})\). \({\rm{ Có  }}P(A\mid B) = \frac{{P(A) \cdot P(B\mid A)}}{{P(B)}} = \frac{2}{3} \cdot \frac{7}{{15}}:\frac{{19}}{{45}} = \frac{{14}}{{19}}{\rm{. }}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(A\) là biến cố: "Bà \(N\) bị bệnh hiểm nghèo \(Y\) "; \(B\) là biến cố: "Xét nghiệm cho kết quả dương tính".

a) Trước khi tiến hành xét nghiệm, xác suất không mắc bệnh hiểm nghèo Y của bà N là

\(P(\bar A) = 1 - P(A) = 1 - 0,005 = 0,995.{\rm{ }}\)

b) Ta cần tính \(P(\bar A\mid \bar B)\).

Theo công thức Bayes ta có: \(P(\bar A\mid \bar B) = \frac{{P(\bar A) \cdot P(\bar B\mid \bar A)}}{{P(\bar A) \cdot P(\bar B\mid \bar A) + P(A) \cdot P(\bar B\mid A)}}.\)

\(P(\bar B\mid \bar A)\) là xác suất để bà \(N\) có xét nghiệm là âm tính nếu bà \(N\) không bị bệnh \(Y\).

Theo bài ra ta có: \(P(\bar B\mid \bar A) = 0,97{\rm{;}}\)

\(P(\bar B\mid A)\) là xác suất để bà N có xét nghiệm âm tính nếu bà N bị bệnh Y

\(P(\bar B\mid A) = 1 - 0,94 = 0,06.{\rm{ }}\)

Thay vào công thức Bayes ta có: \(P(\bar A\mid \bar B) = \frac{{0,995 \cdot 0,97}}{{0,995 \cdot 0,97 + 0,005 \cdot 0,06}} \approx 0,9997.\)

Như vậy, với xét nghiệm cho kết quả âm tính, xác suất không mắc bệnh Y của bà N tăng lên thành \(99,97\% \) (trước xét nghiệm là \(99,5\% \) ).

Lời giải

a) Xét hai biến cố:

A: "Linh kiện được lấy ra từ lô hàng là linh kiện tốt”;

B: "Linh kiện được lấy ra từ lô hàng do nhà máy I sản xuất".

Vi lô linh kiện để lẫn lộn 80 sản phẩm của nhà máy số I và 120 sản phẩm của nhà máy số II nên \(P(B) = \frac{{80}}{{80 + 120}} = 0,4\), suy ra \(P(\bar B) = 1 - 0,4 = 0,6\).

Vì tỉ lệ phế phẩm của các nhà máy I, II lần lượt là: \(4\% ;3\% \) nên tỉ lệ thành phẩm (linh kiện tốt) của các nhà máy I, II lần lượt là \(96\% ;97\% \).

Do đó \({\rm{P}}({\rm{A}}\mid {\rm{B}}) = 0,96\) và \({\rm{P}}({\rm{A}}\mid \bar B) = 0,97\).

Áp dụng công thức xác suất toàn phần, ta có xác suất để linh kiện được lấy ra là linh kiện tốt là:

\({\rm{P}}({\rm{A}}) = {\rm{P}}({\rm{B}}) \cdot {\rm{P}}({\rm{A}}\mid {\rm{B}}) + {\rm{P}}(\bar B) \cdot {\rm{P}}({\rm{A}}\mid \bar B) = 0,4 \cdot 0,96 + 0,6 \cdot 0,97 = 0,966.\)

b) Xét biến cố C: "Linh kiện được lấy ra từ lô hàng là linh kiện phế phẩm".

Khi đó, ta có \({\rm{C}} = \bar A\). Suy ra \({\rm{P}}({\rm{C}}) = {\rm{P}}(\bar A) = 1 - {\rm{P}}({\rm{A}}) = 1 - 0,966 = 0,034\).

Theo bài ra ta có: \(P(C\mid B) = 4\%  = 0,04\).

Do đó, nếu linh kiện được lấy ra là linh kiện phế phẩm thì xác suất sản phẩm đó do nhà máy I sản xuất là: \({\rm{P}}({\rm{B}}\mid {\rm{C}}) = \frac{{P(B) \cdot P(C\mid B)}}{{P(C)}} = \frac{{0,4 \cdot 0,04}}{{0,034}} = \frac{8}{{17}}\).

Nếu linh kiện được lấy ra là linh kiện phế phẩm thì xác suất sản phẩm đó do nhà máy II sản xuất là: \({\rm{P}}(\bar B\mid {\rm{C}}) = 1 - {\rm{P}}({\rm{B}}\mid {\rm{C}}) = 1 - \frac{8}{{17}} = \frac{9}{{17}}\).

Vi \(\frac{9}{{17}} > \frac{8}{{17}}\) nên nếu linh kiện được lấy ra là linh kiện phế phẩm thì xác suất linh kiện đó do nhà máy II sản xuất là cao hơn.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP