Câu hỏi:

25/08/2025 43 Lưu

Cho hình hộp \(ABCD.A'B'C'D'\).

Cho hình hộp \(ABCD.A'B'C'D'\).  Khẳng định nào sau đây là sai? (ảnh 1)

Khẳng định nào sau đây là sai?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Vì \(ABCD.A'B'C'D'\) là hình hộp nên ta có \(\overrightarrow {AD}  = \overrightarrow {BC}  = \overrightarrow {B'C'}  = \overrightarrow {A'D'} \). Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Ta có \(C\left( x \right) = \frac{{ax + b}}{{ - x + d}} \cdot \) Từ đồ thị suy ra \(b = 0\,;d = 100\,;\,a = 200 \Rightarrow C\left( x \right) = \frac{{200x}}{{100 - x}} \cdot \)

Chi phí chênh lệch là \(\Delta C = \left| {C\left( {99} \right) - C\left( {90} \right)} \right| = \left| {\frac{{200 \cdot 99}}{{100 - 99}} - \frac{{200 \cdot 90}}{{100 - 90}}} \right| = 18\,000\) (triệu đồng) \( = 18\) (tỉ đồng).

Đáp án: 18.

Lời giải

Gọi \[M\left( {{x_0};{y_0}} \right) \in \left( C \right) \Rightarrow M\left( {{x_0};\frac{{x_0^2 + 4{x_0} + 5}}{{{x_0} + 2}}} \right)\].

Gọi \[\left( d \right)\] là khoảng cách từ \[M\] đến đường thẳng \[3x + y + 6 = 0\].

Ta có \[d = \frac{1}{{\sqrt {10} }}\left| {\frac{{4x_0^2 + 16{x_0} + 17}}{{{x_0} + 2}}} \right| = \frac{1}{{\sqrt {10} }}\left| {4\left( {{x_0} + 2} \right) + \frac{1}{{{x_0} + 2}}} \right| \ge \frac{4}{{\sqrt {10} }}\].

Đẳng thức xảy ra \[ \Leftrightarrow 4\left| {{x_0} + 2} \right| = \frac{1}{{\left| {{x_0} + 2} \right|}} \Leftrightarrow \left[ \begin{array}{l}{x_0} = \frac{{ - 3}}{2} \Rightarrow {y_0} = \frac{5}{2}\\{x_0} = \frac{{ - 5}}{2} \Rightarrow {y_0} =  - \frac{5}{2}\end{array} \right.\].

Vậy có hai điểm thoả yêu cầu bài toán là \[{M_1}\left( {\frac{{ - 3}}{2};\frac{5}{2}} \right)\] và \[{M_2}\left( {\frac{{ - 5}}{2};\frac{{ - 5}}{2}} \right)\].

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP