Câu hỏi:

25/08/2025 91 Lưu

B. TRẮC NGHIỆM ĐÚNG - SAI. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho hàm số \(y = f\left( x \right) = \frac{{ - 2x - 3}}{{x + 3}} \cdot \)

a) Hàm số đồng biến trên các khoảng \(\left( { - \infty ; - 3} \right)\) và \(\left( { - 3; + \infty } \right).\)

b) Đồ thị hàm số có tiệm cận ngang \(y =  - 3.\)

c) Giá trị nhỏ nhất của hàm số đã cho trên đoạn \(\left[ {0;{\rm{ 2025}}} \right]\) là \(f\left( 0 \right)\).

d) Khoảng cách từ tâm đối xứng của đồ thị hàm số đến trục hoành bé hơn \(3.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

a) Sai. Ta có \(f\left( x \right) = \frac{{ - 3}}{{{{\left( {x + 3} \right)}^2}}} < 0 \Rightarrow \) Hàm số nghịch biến trên các khoảng \(\left( { - \infty ; - 3} \right)\) và \(\left( { - 3; + \infty } \right).\)

b) Sai. Đồ thị hàm số có tiệm cận ngang \(y = \frac{{ - 2}}{1} =  - 2.\)

c) Sai. Hàm số nghịch biến trên \(\left( { - 3; + \infty } \right) \Rightarrow f\left( 0 \right) > f\left( {2025} \right) \Rightarrow \) Giá trị nhỏ nhất của hàm số đã cho trên đoạn \(\left[ {0;{\rm{ 2025}}} \right]\) là \[f\left( {2025} \right).\]

d) Đúng. Tâm đối xứng của đồ thị hàm số là \(I\left( { - 3; - 2} \right)\). Ta có \(d\left( {I,Ox} \right) = \left| { - 2} \right| = 2 < 3.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \[M\left( {{x_0};{y_0}} \right) \in \left( C \right) \Rightarrow M\left( {{x_0};\frac{{x_0^2 + 4{x_0} + 5}}{{{x_0} + 2}}} \right)\].

Gọi \[\left( d \right)\] là khoảng cách từ \[M\] đến đường thẳng \[3x + y + 6 = 0\].

Ta có \[d = \frac{1}{{\sqrt {10} }}\left| {\frac{{4x_0^2 + 16{x_0} + 17}}{{{x_0} + 2}}} \right| = \frac{1}{{\sqrt {10} }}\left| {4\left( {{x_0} + 2} \right) + \frac{1}{{{x_0} + 2}}} \right| \ge \frac{4}{{\sqrt {10} }}\].

Đẳng thức xảy ra \[ \Leftrightarrow 4\left| {{x_0} + 2} \right| = \frac{1}{{\left| {{x_0} + 2} \right|}} \Leftrightarrow \left[ \begin{array}{l}{x_0} = \frac{{ - 3}}{2} \Rightarrow {y_0} = \frac{5}{2}\\{x_0} = \frac{{ - 5}}{2} \Rightarrow {y_0} =  - \frac{5}{2}\end{array} \right.\].

Vậy có hai điểm thoả yêu cầu bài toán là \[{M_1}\left( {\frac{{ - 3}}{2};\frac{5}{2}} \right)\] và \[{M_2}\left( {\frac{{ - 5}}{2};\frac{{ - 5}}{2}} \right)\].

Lời giải

Lời giải

Giả sử điểm \(C\left( {x;2\,{{\rm{e}}^{ - {x^2}}}} \right)\) với \(x > 0\).

Diện tích của hình chữ nhật \(ABCD\) là \(f\left( x \right) = 4x \cdot {{\rm{e}}^{ - {x^2}}}\).

Ta có \(f'\left( x \right) = 4{{\rm{e}}^{ - {x^2}}} - 8{x^2}{{\rm{e}}^{ - {x^2}}}\)\( = 4{{\rm{e}}^{ - {x^2}}}\left( {1 - 2{x^2}} \right)\).

\(f'\left( x \right) = 0\) \( \Rightarrow \left[ \begin{array}{l}x = \frac{{\sqrt 2 }}{2}\,\,\,\,\,\left( n \right)\\x =  - \frac{{\sqrt 2 }}{2}\,\,\,\,\,\,\left( l \right)\end{array} \right.\).

Bảng biến thiên

Cho đồ thị hàm số \(y = 2{e^{ - {x^2}}}\) như hình vẽ. \(ABCD\) là hình chữ nhật thay đổi sao cho \(B\) và \(C\) luôn thuộc đồ thị hàm số đã cho và \(AD\) nằm trên trục hoành. Diện tích hình chữ nhật \(ABCD\) có giá trị lớn nhất bằng bao nhiêu? (ảnh 2)

Vậy maxSABCD=22e.

Câu 3

A. Đồ thị hàm số có đường tiệm cận đứng \[x = 1,\] đường tiệm cận ngang \[y = 2.\]

B. Đồ thị hàm số có đường tiệm cận đứng \[x = 2,\] đường tiệm cận ngang \[y = 1.\]

C. Đồ thị hàm số có đường tiệm cận đứng \[x = 2,\] đường tiệm cận ngang \[y = 0.\]

D. Đồ thị hàm số có đường tiệm cận đứng \[x = 0,\] đường tiệm cận ngang \[y = 1.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\left( { - 2\,; - 3} \right).\)    

B. \(\left( {2\,; - 3} \right).\) 
C. \(\left( { - 2\,;3} \right).\)      
D. \(\left( {2\,\,;\,\,3} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP