Câu hỏi:

26/08/2025 443 Lưu

Đường cong nào dưới đây là đồ thị của hàm số \(y = {x^3} + x + 1\)?

     A. Đường cong nào dưới đây là đồ thị của hàm số \(y = {x^3} + x + 1\)? (ảnh 1)

   B.

Đường cong nào dưới đây là đồ thị của hàm số \(y = {x^3} + x + 1\)? (ảnh 2)

C.Đường cong nào dưới đây là đồ thị của hàm số \(y = {x^3} + x + 1\)? (ảnh 3)

D. Đường cong nào dưới đây là đồ thị của hàm số \(y = {x^3} + x + 1\)? (ảnh 4)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Tập xác định: \(D = \mathbb{R}\).

Ta có: \(y = {x^3} + x + 1\)

            \(y' = 3{x^2} + 1 > 0,\forall x \in \mathbb{R}.\)

Vậy hàm số luôn đồng biến trên \(\left( { - \infty ; + \infty } \right).\) Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Ta có \(\overrightarrow {AD}  = \overrightarrow {BC} \) và \(\left( {\overrightarrow {AS} ,\overrightarrow {BC} } \right) = \left( {\overrightarrow {AS} ,\overrightarrow {AD} } \right) = \widehat {SAD} = 60^\circ \).

Do đó \(\overrightarrow {AS}  \cdot \overrightarrow {BC}  = \overrightarrow {AS}  \cdot \overrightarrow {AD}  = \left| {\overrightarrow {AS} } \right| \cdot \left| {\overrightarrow {AD} } \right| \cdot \cos \widehat {SAD} = AS \cdot AD \cdot \cos 60^\circ  = 2 \cdot 2 \cdot \frac{1}{2} = 2\).

Đáp án: 2.

Lời giải

Lời giải

Giả sử miếng bìa hình vuông \(ABCD\), đáy của hình chóp tứ giác đều là hình vuông \(MNPQ\) tâm \(O\) có cạnh bằng \(x\) dm \(\left( {0 < x < 6\sqrt 2 } \right)\) như hình vẽ. Gọi \(H,\,K\) lần lượt là trung điểm của \(MQ\) và \(NP\).

Thể tích của khối chóp có giá trị lớn nhất bằng bao nhiêu decimét khối? (ảnh 2)

Vì \(ABCD\) là hình vuông cạnh bằng 6 dm nên \(AC = 6\sqrt 2 \) dm, \(HK = x\) dm.

Ta có \(AH = \frac{{AC - HK}}{2} = 3\sqrt 2  - \frac{x}{2}\) dm.

Đường cao của hình chóp tứ giác đều là:

\(h = AO = \sqrt {A{H^2} - O{H^2}}  = \sqrt {{{\left( {3\sqrt 2  - \frac{x}{2}} \right)}^2} - {{\left( {\frac{x}{2}} \right)}^2}}  = \sqrt {18 - 3\sqrt 2 x} \) (dm).

Thể tích của khối chóp là: \(V = \frac{1}{3}h{x^2} = \frac{1}{3}{x^2}\sqrt {18 - 3\sqrt 2 x}  = \frac{1}{3}\sqrt {{x^4}\left( {18 - 3\sqrt 2 x} \right)} \) (dm3).

Để tìm giá trị lớn nhất của \(V\) ta đi tìm giá trị lớn nhất của hàm số \(f\left( x \right) = {x^4}\left( {18 - 3\sqrt 2 x} \right)\) với \(0 < x \le 3\sqrt 2 \).

Ta có: \(f'\left( x \right) = {x^3}\left( { - 15\sqrt 2 x + 72} \right)\), \(f'\left( x \right) = 0\) khi \(x = 0\) hoặc \(x = \frac{{12\sqrt 2 }}{5}\).

Bảng biến thiên của hàm số \(f\left( x \right)\) như sau:

Thể tích của khối chóp có giá trị lớn nhất bằng bao nhiêu decimét khối? (ảnh 3)

Từ bảng biến thiên, ta có \(\mathop {\max }\limits_{\left( {0;3\sqrt 2 } \right]} f\left( x \right) = f\left( {\frac{{12\sqrt 2 }}{5}} \right) = \frac{{1\,492\,992}}{{3125}}\).

Vậy thể tích của khối chóp có giá trị lớn nhất bằng \({V_{\max }} = \frac{1}{3}\sqrt {\frac{{1\,492\,992}}{{3125}}}  = \frac{{288\sqrt {10} }}{{125}}\) (dm3).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP