Bộ 5 đề thi giữa kì 1 Toán 12 Cánh diều cấu trúc mới (có tự luận) có đáp án - Đề 5
26 người thi tuần này 4.6 816 lượt thi 21 câu hỏi 45 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Đề thi HOT:
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
62 câu Trắc nghiệm Khái niệm về khối đa diện (nhận biết)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
Đề ôn luyện Toán Chương 8. Một số yếu tố thống kê, xác suất và lý thuyết đồ thị (đề số 3)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
A. \(\left( {3; + \infty } \right)\).
Lời giải
Lời giải
Từ đồ thị ta thấy hàm số \(y = f\left( x \right)\) đồng biến trên khoảng \(\left( {3; + \infty } \right)\). Chọn A.
Câu 2
A. \(3\).
Lời giải
Lời giải
Hàm số đạt cực trị tại \(x = 1;\,\,x = 3;\,\,x = 4\). Số điểm cực trị của hàm số là 3. Chọn A.
Câu 3
A. \[M = f\left( { - 1} \right)\].
Lời giải
Lời giải
Từ bảng biến thiên, ta thấy \[M = \mathop {\max }\limits_{\left[ { - 1;\,3} \right]} f\left( x \right) = f\left( 0 \right) = 5\]. Chọn D.
Câu 4
A. \(y = 1\).
Lời giải
Lời giải
Từ hình vẽ ta thấy tiệm cận ngang của đồ thị hàm số là đường thẳng có phương trình \(y = 1\). Chọn A.
Câu 5
A. \(3\).
Lời giải
Lời giải
Ta có \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = + \infty \) nên đường tiệm cận đứng của đồ thị hàm số là \(x = 1\).
Lại có \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = 2\) và \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 2\) nên đồ thị hàm số có hai đường tiệm cận ngang là \(y = 2\) và\(y = 5\).
Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số là 3. Chọn A.
Câu 6
A. \(1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(\left( { - 1; - 2} \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
A. \(3.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
A. \(1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
A. \(\left( { - \infty ;0} \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 12
A. \(\overrightarrow {B'C} = \overrightarrow a + \overrightarrow b - \overrightarrow c .\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


![Gọi \(M\) là giá trị lớn nhất của hàm số \[y = f\left( x \right)\] trên đoạn \[\left[ { - 1;\,\,3} \right]\]. Mệnh đề nào trong các mệnh đề sau đây là đúng? (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/08/blobid23-1756172557.png)










![Cho hình chóp tứ giác đều \[S.ABCD\] có độ dài tất cả các cạnh bằng \(2\). Tính \(\overrightarrow {AS} \cdot \overrightarrow {BC} \). (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/08/blobid42-1756173306.png)

