PHẦN I. TRẮC NGHIỆM KHÁCH QUAN
A. TRẮC NGHIỆM NHIỀU PHƯƠNG ÁN LỰA CHỌN.
Mỗi câu hỏi thí sinh chỉ chọn một phương án.
Cho hàm số \(y = f\left( x \right)\) xác định và liên tục trên \(\mathbb{R}\), có đồ thị như hình vẽ. Hàm số \(y = f\left( x \right)\) đồng biến trên khoảng nào dưới đây?
PHẦN I. TRẮC NGHIỆM KHÁCH QUAN
A. TRẮC NGHIỆM NHIỀU PHƯƠNG ÁN LỰA CHỌN.
Mỗi câu hỏi thí sinh chỉ chọn một phương án.
Cho hàm số \(y = f\left( x \right)\) xác định và liên tục trên \(\mathbb{R}\), có đồ thị như hình vẽ. Hàm số \(y = f\left( x \right)\) đồng biến trên khoảng nào dưới đây?

A. \(\left( {3; + \infty } \right)\).
Quảng cáo
Trả lời:
Lời giải
Từ đồ thị ta thấy hàm số \(y = f\left( x \right)\) đồng biến trên khoảng \(\left( {3; + \infty } \right)\). Chọn A.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Ta có \(\overrightarrow {AD} = \overrightarrow {BC} \) và \(\left( {\overrightarrow {AS} ,\overrightarrow {BC} } \right) = \left( {\overrightarrow {AS} ,\overrightarrow {AD} } \right) = \widehat {SAD} = 60^\circ \).
Do đó \(\overrightarrow {AS} \cdot \overrightarrow {BC} = \overrightarrow {AS} \cdot \overrightarrow {AD} = \left| {\overrightarrow {AS} } \right| \cdot \left| {\overrightarrow {AD} } \right| \cdot \cos \widehat {SAD} = AS \cdot AD \cdot \cos 60^\circ = 2 \cdot 2 \cdot \frac{1}{2} = 2\).
Đáp án: 2.
Lời giải
Lời giải
Tập xác định: \(D = \mathbb{R}\).
Ta có: \(y = {x^3} + x + 1\)
\(y' = 3{x^2} + 1 > 0,\forall x \in \mathbb{R}.\)
Vậy hàm số luôn đồng biến trên \(\left( { - \infty ; + \infty } \right).\) Chọn D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(3.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(3\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
![Cho hình chóp tứ giác đều \[S.ABCD\] có độ dài tất cả các cạnh bằng \(2\). Tính \(\overrightarrow {AS} \cdot \overrightarrow {BC} \). (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/08/blobid42-1756173306.png)







