Bộ 5 đề thi giữa kì 1 Toán 12 Cánh diều cấu trúc mới (có tự luận) có đáp án - Đề 2
29 người thi tuần này 4.6 0.9 K lượt thi 21 câu hỏi 45 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 1
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 9
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 8
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 7
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 6
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 5
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 4
Bộ 10 đề thi cuối kì 2 Toán 12 Chân trời sáng tạo có đáp án - Đề 3
Danh sách câu hỏi:
Câu 1
A. \(\left( { - 2;2} \right)\).
Lời giải
Lời giải
Theo bảng biến thiên ta thấy hàm số đã cho đồng biến trên các khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( {2; + \infty } \right)\). Chọn C.
Lời giải
Lời giải
Ta có , trong đó và là các nghiệm bội chẵn. \(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = - 1\\x = 1\\x = 2\end{array} \right.\)
Do đó hàm số đã cho có 2 cực trị. Chọn D.
Câu 3
A. \(S = 2\).
Lời giải
Lời giải
Dựa vào đồ thị ta có \(a = 4;b = - 3 \Rightarrow S = 2{\rm{a}} + 3b = - 1\). Chọn D.
Câu 4
Lời giải
Lời giải
Vì \(\mathop {\lim }\limits_{x \to {2^ + }} y = + \infty \) nên đường thẳng \(x = 2\) là tiệm cận đứng của đồ thị hàm số. Chọn D.
Câu 5
A. \(3\).
Lời giải
Lời giải
Ta có \(\mathop {\lim }\limits_{x \to {0^ \pm }} f\left( x \right) = + \infty \), suy ra \(x = 0\) là tiệm cận đứng của đồ thị hàm số.
Lại có \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = - 2\), suy ra \(y = - 2\) là tiệm cận ngang của đồ thị hàm số. Chọn B.
Câu 6
A. \(y = 2 + 3{x^2} - {x^3}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(4\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
A. \[\overrightarrow {A'C'} \] .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
A. \(\left( {4\,;\, + \infty } \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 11
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 12
A. \[ - \frac{1}{2}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

![Gọi \(a,b\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = f\left( x \right)\) trên đoạn \(\left[ { - 2;3} \right]\). Tính \(S = 2{\rm{a}} + 3b\). (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/08/blobid1-1756131682.png)


![Cho hàm số \[y = f\left( x \right)\] xác định trên \(\mathbb{R}\) và có đồ thị là đường cong trong hình vẽ dưới. Số nghiệm của phương trình \(f\left( x \right) = 0\) là (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/08/blobid5-1756131937.png)


![a) Hệ số \[a < 0\]. b) Đồ thị hàm số \(y = f\left( x \right)\) có điểm cực tiểu là \(\left( {1;\,3} \right)\). c) Hàm số đồng biến trên khoảng \(\left( { - 1;\,1} \right)\). d) \[f\left( 3 \right) = - 5\]. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/08/blobid10-1756132215.png)

